

Permit / Application Information Sheet Division of Environmental Protection West Virginia Office of Air Quality

Company:	Wolf	Run Mining LLC	Facility:	Sentinel Facility
Region:	6	Plant ID: 001-00005	Application #:	13-0119D
Engineer:	Robert	s, Dan	Category:	Coal
Physical Address:		e 119/250 South to Route opi WV 26416		NG - BITUMINOUS COAL & LIGNITE inous Coal and Lignite Surface Mining
County:	Barb			
Other Parties:	MANA	GER - Nair, Greg 304-265-9778		

Information Needed for Database and AIRS No required information is missing.	Regula PM10 PM10 PT PT	ted Pollutants Particulate Matter < 10 um Particulate Matter < 10 um Total Particulate Matter Total Particulate Matter	77.120 Lbs/Hr 121.790 TPY 197.870 Lbs/Hr 322.160 TPY
--	------------------------------------	--	---

Summary from (Air Programs NSPS TITLE V	his Permit 13-01191	Applicable Regulations 05 13 16 30 60 Y	
Fee Program	Fee	Application Type	
8K	\$2,000.00	MODIFICATION	
Antivity Dates			-

APPLICATION RECIEVED

APPLICANT PUBLISHED LEGAL AD

APPLICATION FEE PAID ASSIGNED DATE

ADDITIONAL INFO RECEIVED

APPLICATION INCOMPLETE ADDITIONAL INFO RECEIVED APPLICATION INCOMPLETE ADDITIONAL INFO RECEIVED

APPLICATION DEEMED COMPLETE

08/17/2016

The

08/18/2016 \$2,000 through OS-7. 08/18/2016

09/01/2016 affidavit of publ. 10/21/2016

11/01/2016 response 11/18/2016

12/16/2016 response

02/10/2017

Notes from Database

Permit MM Note: Modification to do the following: add radial stacking belt conveyor BC-20; add clean coal belt conveyor BC-21 and open storage pile OS-08 to be fed by the new belt plow on existing belt conveyor BC-6; declare refuse belt conveyors BC-10 and BC-11 inactive; remove refuse belt conveyor BC-12; relocate refuse belt conveyor BC-13 and open storage pile OS-3 to the clean coal conveying system to be fed by the new belt plow on existing belt conveyor BC-6 (if BC-13 and OS-3 are not 08/17/2016Barbour relocated, then they will be removed from the facility); and Democratincrease the size of the existing open storage piles OS-1

NON-CONFIDENTIAL

Please note, this information sheet is not a substitute for file research and is limited to data entered into the AIRTRAX database.

Company ID: 001-00005 Company: Wolf Run Mining LLC Printed: 04/11/2017 Engineer: Roberts, Dan

INTERNAL PERMITT	NG DOCUME	NT TRACKING MANIFEST
Company Name Wolf Run Permitting Action Number R13-0		vary - Sentinel Prop Plant DAQ Days
	O Temporary O Relocation O Construction	Modification O PSD (Rule 14) O NNSR (Rule 19)
Documents Attached: Engineering Evaluation/Memo Draft Permit Notice Denial Final Permit/General Permit Region	 Withdra Letter Other (s	001 0000

Date	From	То	Action Requested
3/22/17	Dan	Bev	Please review and comment. I am, requesting permission to go to notice.
3/3/	Bu-	Dan	as to Notice

NOTE:

Retain a copy of this manifest for your records when transmitting your document(s).

NON-CONFIDENTIAL

Roberts, Daniel P

From:

Roberts, Daniel P

Sent:

Friday, February 10, 2017 8:58 AM Nair, Greg (GNair@archcoal.com)

To: Cc:

McKeone, Beverly D

Subject:

WV DAQ NSR Permit Application Complete for Wolf Run Mining Company - Sentinel

Preparation Plant

RE:

Application Status: Complete
Wolf Run Mining Company
Sentinel Preparation Plant
Permit Application R13-0119D
Plant ID No. 001-00005

Mr. Nair,

Your application for a modification permit for a wet wash coal preparation plant was received by this Division on August 17, 2016 and assigned to the writer for review. On August 17, 2016, the applicant published a Class I legal advertisement in *The Barbour Democrat*. On September 1, 2016, the DAQ received an original affidavit of publication. On October 21, 2016, the DAQ deemed the application to be incomplete and requested additional information and corrections. After further correspondence, on December 16, 2016, the DAQ received additional information and revised application pages. Upon further review of said application and additional information received, it has been determined that the application is complete and, therefore, the statutory review period commenced on February 10, 2017.

In the case of this application, the agency believes it will take approximately 45 days to make a final permit determination.

This determination of completeness shall not relieve the permit applicant of the requirement to subsequently submit, in a timely manner, any additional or corrected information deemed necessary for a final permit determination.

Should you have any questions, please contact Dan Roberts at (304) 926-0499 ext. 1210 or reply to this email.

Roberts, Daniel P

LD. No. 001-00005 ROB RIS-01190
Company Wolf Run Moning Company
Sentinel Pres Plant 6

Initials

From: Nair, Greg <GNair@archcoal.com>
Sent: Thursday, January 5, 2017 2:06 PM

To: Roberts, Daniel P

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel

Preparation Plant

Good Afternoon Dan,

Just thought I would drop a note and see how the review is coming along on the modification for Sentinel.

Greg Nair

Arch Coal, Inc.

Manager Surface Mine Planning

Northern Appalachia Operations

100 Tygart Drive Grafton, WV 26354

Office Direct: (304) 265-9778 Mobile: (304) 290-3202 Email: gnair@archcoal.com

From: Roberts, Daniel P [mailto:Daniel.P.Roberts@wv.gov]

Sent: Wednesday, December 14, 2016 8:16 AM

To: Nair, Greq

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Greg,

Hey. Sorry, I just missed your email yesterday afternoon. Everything looks good. Go with it.

Dan

From: Nair, Greg [mailto:GNair@archcoal.com]
Sent: Tuesday, December 13, 2016 4:11 PM
To: Roberts, Daniel P < Daniel.P.Roberts@wv.gov>

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Dan,

Disregard the earlier email. Here is the corrected version. Does this look okay?

Greg Nair

Arch Coal, Inc.

Manager Surface Mine Planning

Greg Nair Manager Surface Mine Planning (304)265-9778 Direct (304)290-3202 Mobile

gnair@archcoal.com

December 14, 2016

I.D. No COL-00005 RIS-0190
Com Wolf Run Mining Company
Com Wolf Run Mmmg Company Facility Sent mel Prep Plant Region 6
Initials

Mr. Daniel Roberts WV Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia 25304

Re:

Wolf Run Mining Company Sentinel Preparation Plant Permit Application R13-0119D Plant ID No. 001-00005

Dear Mr. Roberts:

Wolf Run Mining Company's application for a modification permit for a wet wash coal preparation plant was received by your Division on August 17, 2016 and assigned to you for review. Wolf Run Mining Company placed a Class I legal advertisement in The Barbour Democrat on August 17, 2016. The DAQ received original affidavit of publication on September 1, 2016. In an email dated October 21, 2016, the DAQ deemed the application to be incomplete. On November 1, 2016, the DAQ received a response with corrected application pages. Wolf Run Mining Company received an email on November 18 from DAQ with additional comments. This letter shall address those items that were deemed incomplete. Therefore, I offer the following comments based on your review:

1. On Attachment F – Process Flow Diagram, the diagram pictures refuse conveyor BC-11 transferring refuse onto clean coal conveyor BC-19. BC-19 is supposed to be fed clean coal from conveyor BC-6. Please make corrections as necessary.

<u>Wolf Run Response</u> On Attachment F – Process Flow Diagram, the diagram has been revised to reflect the current configuration. BC-19 does feed the clean coal from conveyor BC-6.

<u>DAQ Comment -</u> Also, where does the refuse go after belt conveyor BC-11 now that belt conveyor BC-12 has been deleted? Also, where does the refuse go after belt conveyor BC-11 now that belt conveyor BC-12 has been deleted?

Arch Coal, Inc. Eastern Operations 100 Tygart Drive, Grafton, West Virginia 26354 www.archcoal.com

Mr. Dan Roberts November 28, 2016 Page Two Greg Nair
Manager Surface Mine Planning
(304)265-9778 Direct
(304)290-3202 Mobile

gnair@archcoal.com

Wolf Run Response - The circuit that used to handle the refuse after Belt Conveyor BC-11. These have been identified as IDLE as we discussed..

2. On page 2 of Attachment G – Process Description, paragraphs 5-9 still include belt conveyor BC-12 and belt conveyor BC-13 and Open storage pile OS-7 which were relocated to the clean coal circuit. Please make corrections as necessary. In paragraph 4, please expand and describe where the refuse goes after belt conveyor BC-11. The Process Description should be an written description of the Process Flow Diagram and the history of past changes is not needed. Please just included the up to date information and proposed changes.

Wolf Run Response – Attachment G – Process Description has been revised.

- 3. It appears that 360 TPH and 400,000 TPY exit crusher CR-2 onto conveyor BC-15. Therefore, the following changes need to be made:
 - ➤ On the Equipment Table and Conveying Affected Source Sheet, change the maximum capacity of BC-15 from 800,000 TPY to 400,000 TPY.
 - ➤ On Attachment N Emission Calculations, change the maximum transfer rate for transfer point TP-35 from 800,000 TPY to 400,000 TPY.

Wolf Run Response – On the Equipment Table and Conveying Affected Source Sheet, I have changed the maximum capacity of BC-15 from 800,000 TPY to 400,000 TPY.

On Attachment N – Emissions Calculations, I have changed the maximum transfer rate for transfer point TP-35 from 800,000 TPY to 400,000 TPY.

4. On the Equipment Table, change the references for Bin 1, Bin 2 and Bin 3 to BS-1, BS-2 and BS-3, respectively.

<u>Wolf Run Response</u> On the Equipment Table, I have changed the references for Bin 1, Bin 2 and Bin 3 to BS-1, BS-2 and BS-3.

Arch Coal, Inc.
Eastern Operations
100 Tygart Drive,
Grafton, West Virginia 26354
www.archcoal.com

Mr. Dan Roberts November 28, 2016 Page Three **Greg Nair**Manager Surface Mine Planning (304)265-9778 Direct (304)290-3202 Mobile

gnair@archcoal.com

5. On Attachment N – Emissions Calculations in Section 2, change the description of transfer point TP-23 from BC-11 to BC-19 to whatever is appropriate now. Change the description of transfer point TP-36 to delete the reference to SS-1. Change the description of transfer point TP-41 to delete the reference to SS-2. Transfer point TP-53 from BC-13 to OS-3 lists a control device of SW-WS (water sprays), but a control efficiency of zero. It appears that the control device should be changed to N (none).

<u>Wolf Run Response</u> – Attachment N – Emissions Calculations in Section 2, I have changed the description of transfer point TP-23 from BC-11 to BC-19 to what is appropriate now. I have changed the description of transfer point TP-36 to delete the reference to SS-1. I have changed the description of transfer point TP-41 to delete the reference to SS-2. Transfer point TP-53 from BC-13 to OS-3 listed a control device of SW-WS (water sprays), but a control efficiency of zero. I have changed the control device to N (none).

6. On Attachment N – Emissions Calculations in Section 3, change the stockpile base area for OS-3 from 62,500 ft2 to 46,875 ft2.

<u>Wolf Run Response</u> On Attachment N – Emissions Calculations in Section 3, I have changed the stockpile base area for OS-3 from 62,500 ft2 to 46,875 ft2.

I have addressed the deficiencies in writing within the fifteen (15) days of the receipt of the email. I am submitting a copy of the comments electronically via email and am mailing the required one copy.

If you have any additional comments or need any additional information please do not hesitate to contact me.

Sincerely,

Greg Nair

Manager Surface Mine Planning

Arch Coal, Inc. Eastern Operations 100 Tygart Drive, Grafton, West Virginia 26354 www.archcoal.com

Deep Mine Raw Coal Circuit

- Raw coal exits the mine by a 54" belt conveyor (BC-1) which is protected by a partial enclosure (TC-PE1).
- Belt Conveyor 1 goes through transfer point (TP-1) to Double Roll Crusher (CR-1)
- From (CR-1) coal will go through transfer point 2 (TP-2) to Double Deck Screen (S-1), full enclosure (CS-FE1) protects structures from TP-1 to S-1.
- From S-1 the coal processes through transfer point 3 (TP-3) also protected by CS-FE1 to 54" belt conveyor 2 (BC-2) protected by partial enclosure 2 (TC-PE2).
- The raw coal than passes through transfer point 4 (TP-4) protected by full enclosure 2 (CS-FE2) to double deck screen 2 (S-2) onto double deck screen 3 (S-3) through transfer point 4A (TP-4A).
- Sized coal leaving double deck screen 3 passes through transfer point 5 (TP-5) also protected by full enclosure 2 (CS-FE2) to 48" belt conveyor 3 (BC-3) protected by partial enclosure (TC-PE3).
- The sized coal will then pass through transfer point 6 (TP-6) to stacking tube 1 (ST-1) and stockpile (OS-1) protected by (SL-FE35) and (WS-SW1).
- The sized coal will enter an underground feeder via dozer through transfer point 7 (TP-7) which is protected by (LO-UC1).
- The sized coal will exit the underground feeder through transfer point 8 (TP-8) protected by full enclosure 4 (TC-FE4) to 30" belt conveyor 4 (BC-4) protected by partial enclosure 4 (TC-PE4).
- Sized coal will exit belt conveyor 4 through transfer point 9 (TP-9) inside the preparation plant, protected by full enclosure 5 (TC-FE5).

Trucked Raw Coal Circuit

- Raw coal will be trucked to a truck dump and unloaded onto stockpile (OS-4) at transfer point 32 (TP-32).
- At transfer point 33 (TP-33) raw coal will be transferred from (OS-4) by an endloader. The endloader will take the raw coal to crusher (CR-2) which is protected by (CS-PE34) at transfer point 34 (TP-34) which is also protected by water (SW-WS9).
- From crusher (CR-2) refuse which is greater than 2 inches will enter onto belt conveyor 15 (BC-15) which is protected by partial enclosure (TC-PE20) at transfer point 35 (TP-35).
- From belt conveyor 15 (BC-15) refuse will enter onto stockpile (OS-5) at transfer point 36 (TP-36).
- An endloader will remove the refuse from stockpile (OS-5) at transfer point 37 (TP-37). The loader will then place the refuse in a truck at transfer point 38 (TP-38). The truck will then haul the material to the refuse pile and unload onto the refuse pile at transfer point 39 (TP-39).
- At transfer point 40 (TP-40), protected by partial enclosure (TC-PE21) sized coal will exit crusher (CR-2) and enter onto belt conveyer (BC-16).
- Belt conveyor (BC-16) will transfer sized coal onto stockpile (OS-6) at transfer point 41 (TP-41). The sized coal will be transferred from stockpile (OS-6) to stockpile (OS-1) by dozer at transfer point 42 (TP-42).
- At stockpile (OS-1) the coal will enter the underground feeder and proceed through the preparation plant as discussed earlier in the process description. Once the clean coal exits the preparation plant onto belt conveyor (BC-5) to belt conveyor (BC-19).

Clean Coal Circuit

- Coal will exit the preparation plant at transfer point 10 (TP-10) (TC-FE5) and enter on 36" belt conveyor 5 (BC-5) which is protected by partial enclosure 5 (TC-PE5).
- Belt conveyor 5 (BC-5) will transfer to 36" belt conveyor 6 (BC-6) protected by partial enclosure 6 (TC-PE6) through transfer point 11 (TP-11) protected by full enclosure 6 (TC-FE6).
- The coal will then pass through transfer point 49 (TP-49).
- A plow (flop gate) will be installed in BC-6 at transfer point 49 (TP-49) which will be protected by a partial enclosure 49 (TC-PE49).
- The coal will then pass through transfer point 12 (TP-12) to stacking tube (ST-2) and stockpile (OS-2) protected by (SL-FE36).
- The coal will enter an underground feeder via dozer, (LO-UC2), transfer point 13 (TP-13), protected by (LO-UC2).
- The coal will exit the underground feeder through transfer point 14 (TP-14) protected by full enclosure 8 (TC-FE8) to 60" belt conveyor 7 (BC-7) protected by partial enclosure 7 (TC-PE7).
- Coal will exit belt conveyor 7 through transfer point 15 (TP-15) to Bin 1 (BS-1) protected by full enclosure 9 (SL-FE9).
- The coal will exit BS-1 to the railroad cars through transfer point 16 (TP-16) protected by (LR-PE16).
- Belt conveyor (BC-6) will transfer coal to Belt conveyor (BC-13) to new stacking tube (ST-3) which will transfer clean coal at transfer point 53 (TP-53) to stockpile (OS-3).
- The coal will enter an underground feeder via dozer, (LO-UC4) transfer point 26 (TP-26), protected by (LO-UC4).
- Coal will flow through the underground tunnel until it enters onto belt conveyor (BC-7) which is protected by partial enclosure (TC-PE7) at transfer point (TP-14) which is protected by full enclosure (TC-FE8).
- Belt conveyor (BC-7) will transfer coal into Bin 1 (BS-1) at transfer point (TP-15) which is protected by full enclosure (SL-FE9).
- From (BS-1) all coal will enter onto the rail at transfer point (TP-16) which is protected by (LR-TC1).
- The plow (flop gate) to be installed in BC-6 at transfer point 49 (TP-49) will be protected by partial enclosure 49 (TC-PE49). The plow at TP-49 will divert the material into a chute off the side of BC-6 at TP-49, then depending on which way the flop gate is positioned at TP-49 will determine whether the material goes to BC-13 and the new stacking tube (ST-3) or to BC-21 (the new radial stacker) to OS-8.
- Belt conveyor (BC-21) which is a radial stacker will transfer coal to stockpile (OS-8) at transfer point 50 (TP-50).
- From stockpile OS-8, clean coal will be removed by a loader at transfer point 52 (TP-52), the loader will load trucks at transfer point 51 (TP-51).
- The middlings will exit the plant on belt conveyor 19 (BC-19) and will transfer middlings to belt conveyor (BC-17) at transfer point 43 (TP-43) which is protected by partial enclosure (TC-PE22).
- At transfer point 44 (TP-44) coals will transfer to belt conveyor (BC-18) which is protected by partial enclosure (TC-PE23).

Clean Coal Circuit cont.

- Belt conveyor (BC-18) will transfer the middlings to Radial Stacker at transfer point (TP-48 which is protected by partial enclosure (TC-PE48).
- Radial Stacker (BC-20) will transfer middlings to stockpile (OS-7) at transfer point 45 (TP-45).
- From stockpile (OS-7) coal will be pushed to an underground feeder by dozer at transfer point 46 (TP-46) which is protected by (LO-UC3).
- Coal will flow through the underground tunnel until it enters onto belt conveyor (BC-7) which is protected by partial enclosure (TC-PE7) at transfer point (TP-14) which is protected by full enclosure (TC-FE8).
- Belt conveyor (BC-7) will transfer coal into Bin 1 (BS-1) at transfer point (TP-15) which is protected by full enclosure (SL-FE9).
- From (BS-1) all coal will enter onto the rail at transfer point (TP-16) which is protected by (LR-TC1).

Refuse Circuit

- At full enclosure 2 (FE-2) refuse will exit double screen (S-3) through transfer point 19 (TP-19) protected by (CS-FE2) to 42" belt conveyor 9 (BC-9) protected by partial enclosure 10 (TC-PE10).
- From belt conveyor 9 refuse will enter onto 36" belt conveyor 8 (BC-8) protected by partial enclosure 9 (TC-PE9) through transfer point (TP-20) protected by partial enclosure 11 (TC-PE11).
- Also entering onto belt conveyor 8 (BC-8) is refuse, exiting the preparation plant at transfer point 17 (TP-17) protected by full enclosure 5 (TC-FE5).
- All refuse will enter Bin 2 (BS-2), protected by full enclosure 10 (SW-FE10) from belt conveyor 8 (BC-8) through transfer point 18 (TP-18) also protected by full enclosure 10 (SW-FE10).
- From (BS-2) refuse will exit by two different transfer points; the main process will have the refuse exiting BS-2 pass through transfer point 28 (TP-28) protected by full enclosure 10 (SW-FE10) to 36" belt conveyor 14 (BC-14) protected by partial enclosure 19 (TC-PE19).
- At bin 2 (BS-2) part of the refuse from the preparation plant will enter into trucks at transfer point 47 (TP-47) protected by (UD-PE47) to be hauled to the refuse area which the unpaved access road will be protected by (HR-WS12).
- From belt conveyor 14 (BC-14) refuse will enter Bin 3 (BS-3) through transfer point 29 (TP-29) protected by full enclosure (SL-FE11).
- Refuse will discharge from BS-3 to a pan by transfer point 30 (TP-30) protected by (LR-PE30). The pan will then spread the refuse to the refuse pile through transfer point 31 (TP-31).
- The secondary process proposed the refuse exiting BS-2 onto belt conveyor 10 at transfer point 22 (TP-22) protected by partial enclosure 13 (TC-PE13) and enter onto 24" belt conveyor 11 (BC-11) protected by partial enclosure 13 (TC-PE13).
- Refuse will then pass through transfer point 23 (TP-23) protected by partial enclosure 14 (TC-PE14) to 24" belt conveyor 12 (BC-12) protected by partial enclosure 15 (TC-PE15).
- Belt conveyor 12 will exit refuse through transfer point 24 (TP-24) protected by partial enclosure 16 (TC-PE16) onto 24" belt conveyor 13 (BC-13) protected by partial enclosure (TC-PE17) attached to a radial stacker protected by (SI-CS1).
- Refuse will then enter onto stockpile (OS-3) through transfer point 25 (TP-25).
- From stockpile OS-3, refuse will be removed by a loader at transfer point 26 (TP-26), the loader will load trucks at transfer point 27 (TP-27).
- The trucks will leave the site via unpaved and paved access roads protected by water (HR-WS8).
- The secondary process identified above is being revised in this modification. It should be noted that BC-10 and BC-11 are Idle. It should also be noted that BC-12 has been removed and the remaining from TP-23 to end of circuit is either being removed or relocated to the clean coal circuit.

Stockpile bases for previously approved stockpile area will be enlarged to 37,500 square feet or 50,000 tons maximum. Two stockpiles, OS-3 and OS-8, will be enlarged to a base of 46,875 square feet or 62,500 tons maximum.

EQUIPMENT TABLE

Equipment ID No.	Description	Year	Maximun	1 Capacity	Control
		Installed	TPH	TPY	Equipment
CR-1	Double Roll Crusher	1991*	1350	3,600,000	FE-1
CR-2	Double Roll Crusher	2011	600	3,600,000	CS-PE34
S-1	Double Deck Screen	1991*	1350	3,600,000	FE-1
S-2	Double Deck Vibrating Screen	1991*	1350	3,600,000	FE-2
S-3	Double Deck Vibrating Screen	1991*	1350	3,600,000	FE-2
Belts					
BC-1	Belt Conveyor - Raw Coal	1991*	1350	3,600,000	PE-1
BC-2	Belt Conveyor - Raw Coal	1991*	1350	3,600,000	PE-2
BC-3	Belt Conveyor - Raw Coal	1991*	1350	3,600,000	PE-3
BC-4	Belt Conveyor - Raw Coal	1991*	600	4,400,000	PE-4
BC-5	Belt Conveyor - Clean Coal	1991*	800	4,400,000	PE-5
BC-6	Belt Conveyor - Clean Coal	1991*	800	3,600,000	PE-6
BC-7	Belt Conveyor - Clean Coal	1991*	2500	4,400,000	PE-7
BC-8	Belt Conveyor - Refuse	1991*	400	2,280,000	PE-9
BC-9	Belt Conveyor - Refuse	2008	244	300,000	PE-10
BC-10 (IDLE)	Belt Conveyor - Refuse	2008	244	300,000	PE-12
BC-11 (IDLE)	Belt Conveyor - Refuse	2008	244	300,000	PE-13
BC-13	Belt Conveyor – Clean Coal	2016**	360	800,000	PE-17
BC-14	Belt Conveyor - Refuse	1991*	400	1,980,000	PE-19
BC-15	Belt Conveyor - Sized Coal	2011	360	400,000	PE-20
BC-16	Belt Conveyor - Sized Coal	2011	360	800,000	PE-21
BC-17	Belt Conveyor - Clean Coal	2011	360	800,000	PE-22
BC-18	Belt Conveyor - Clean Coal	2011	360	800,000	PE-23
BC-19	Belt Conveyor - Clean Coal	2011	360	800,000	PE-24
BC-20	Belt Conveyor - Clean Coal	2016**	360	800,000	PE-48
BC-21	Belt Conveyor - Clean Coal	2016**	360	800,000	PE-50

EQUIPMENT TABLE

Storage	Description	Max. Base Area (sq. ft.)	Max. Storage Capacity (tons)	Max. Capacity TPY	Control Equipment
OS-1	Sized Coal Stockpile	37,500	50,000	4,400,000	WS-1
OS-2	Clean Coal Stockpile	37,500	50,000	3,600,000	WS-2
OS-3	Clean Coal Stockpile	46,875	62,500	800,000	WS-3
BS-1	Clean Coal Bin	600	161	4,400,000	FE-9
BS-2	Refuse Coal Bin	600	161	2,280,000	FE-10
BS-3	Refuse Coal Bin	600	161	1,980,000	FE-11
OS-4	Raw Coal	37,500	50,000	800,000	WS-9
OS-5	Sized Coal Stockpile	37,500	50,000	400,000	WS-10
OS-6	Sized Coal Stockpile	37,500	50,000	800,000	WS-11
OS-7	Sized Coal Stockpile	37,500	50,000	800,000	TC-WS15
OS-8	Clean Coal Stockpile	46,875	62,500	800,000	TC-WS16

^{*} Notes when permit was acquired by current owner, not when equipment may have been initially installed.

** Notes when equipment will be installed and/or modified, if permit approved.

CONVEYING AFFECTED SOURCE SHEET

Source	Date of Construction, Reconstruction,	Type of	Size of		n Material er Rate ⁵	Average Moisture	Control
Identification Number ¹	or Modification (Month/Year) ²	Material Handled ³	Material Handled ⁴	tons/hour	tons/year	Content (%) ⁶	Device ⁷
BC-1	11/11	RC	Raw – 2" x 0	1350	3,600,000	5 %	PE-1
BC-2	11/11	SC	Raw – 2" x 0	1350	3,600,000	5 %	PE-2
BC-3	11/11	SC	¾' x 0	1350	3,600,000	5 %	PE-3
BC-4	11/11	SC	¾' x 0	600	4,400,000	5 %	PE-4
BC-5	11/11	CC	³¼' x 0	800	4,400,000	5 %	PE-5
BC-6	11/11	CC	³⁄4' x 0	800	3,600,000	5 %	PE-6
BC-7	11/11	CC	¾' x 0	2500	4,400,000	5 %	PE-7
BC-8	11/11	R	+ 3/4'	400	2,280,000	5 %	PE-9
BC-9	06/08	R	+ 3/4'	244	300,000	5 %	PE-10
BC-10 (IDLE)	06/08	R	+ 3/4".	244	300,000	5 %	PE-12
BC-11 (IDLE)	06/08	R	+ 3/4'	244	300,000	5 %	PE-13
BC-13	11/11	CC	¾' x 0	360	800,000	5 %	PE-17
BC-14	11/11	R	+ 3/4'	400	1,980,000	5 %	PE-19
BC-15	11/11	R	+ 3/4°	360	400,000	5 %	PE-20
BC-16	11/11	SC	¾' x 0	360	800,000	5 %	PE-21
BC-17	11/11	CC	³4' x 0	360	800,000	5 %	PE-22
BC-18	11/11	CC	¾' x 0	360	800,000	5 %	PE-23
BC-19	11/11	CC	¾' x 0	360	800,000	5 %	PE-24

1. Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

BC Belt Conveyor BE Bucket Elevator
PS Pneumatic System SC Screw Conveyor

DL Drag-link Conveyor VC Vibrating Conveyor

OT Other

2. Enter the date that each crusher and screen was constructed, reconstructed, or modified.

3. Enter the type of material being handled - Raw Coal (RC) Sized Coal (SC) Clean Coal (CC) Refuse (R) Other (O)

4. Enter the nominal size of the material being conveyed (e.g. clean coal - ¾" x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.

5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.

6. Enter the average percent moisture content of the conveyed material.

7. Enter the control device for the conveyor. PE - Partial Enclosure (example 3/4 hoop), FE - Full Enclosure, N - None

CONVEYING AFFECTED SOURCE SHEET

Source	Date of Construction, Reconstruction,	Type of	Size of		n Material er Rate ⁵	Average Moisture	Control
Identification Number ¹	or Modification (Month/Year) ²	Material Handled ³	Material Handled⁴	tons/hour	tons/year	Content (%) ⁶	Device ⁷
BC-20	11/16	CC	2" x 0	360	800,000	5 %	PE-48
BC-21	11/16	CC	2" x 0	360	800,000	5 %	PE-49

1. Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

BC	Belt Conveyor	\mathbf{BE}	Bucket Elevator	DL	Drag-link Conveyor
PS	Pneumatic System	SC	Screw Conveyor	VC	Vibrating Conveyor
OT	Other				

2. Enter the date that each crusher and screen was constructed, reconstructed, or modified.

3. Enter the type of material being handled - Raw Coal (RC) Sized Coal (SC) Clean Coal (CC) Refuse (R) Other (O)

4. Enter the nominal size of the material being conveyed (e.g. clean coal - ¾" x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.

5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.

6. Enter the average percent moisture content of the conveyed material.

7. Enter the control device for the conveyor. PE - Partial Enclosure (example 3/4 hoop), FE - Full Enclosure, N - None

 Date of	Em	Emissions Unit (Source)	Air	AirPollutionControlDevice		Emission Point
Change	No.1	Source	No.2	Device Type	A Z	Emission Type ⁴
11/01/2011	BC-1	Belt Conveyor	TC- PE1	PE	TP-1	N/A
11/01/2011	CR-1	Crusher	CS- FE1	FE	TP-2	N/A
11/01/2011	S-1	Double Deck Screen	CS- FE1	FE	TP-3	N/A
11/01/2011	BC-2	Belt Conveyor	TC- PE2	PE	TP-4	N/A
11/01/2011	S-2	Double Deck Screen	CS- FE2	FE	TP-4	N/A
11/01/2011	S-3	Double Deck Screen	CS- FE2	FE	TP-5	N/A
11/01/2011	BC-3	BeltConveyor	TC- PE3	PE	TP-6	N/A
11/01/2011	ST-1	Stacking Tube	SL- FE35	FE	TP-6	N/A
 11/01/2011	OT-1	Dozer To Feeder	LO- UC1	cs	TP-7	N/A
11/01/2011	BC-4	Belt Conveyor	TC- PE4	PE	TP-8	N/A
11/01/2011	BC-4	Belt Conveyor to Prep Plant	TC- FE5	FE	TP-9	N/A

¹Number as 1s, 2s, 3s...or other appropriate designation. Must match process flow diagram.

² Number as 1c, 2c, 3c...or other appropriate designation. Must match process flow diagram. ³ Number as 1e, 2e, 3e...or other appropriate designation. Must match process flow diagram.

⁴ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

Type Change,	Date of	田	Emissions Unit (Source)	AirP	AirPollutionControlDevice		Emission Point
Modification, or Removal)	Change	No.1	Source	No.2	Device Type	A Z	Emission Type ⁴
Modification	11/01/2011	BC-5	Prep Plant to Belt Conveyor	TC- FE5	丑五	TP-10	N/A
Modification	11/01/2011	BC-5	Belt Conveyor	TC- FE6	FE	TP-11	N/A
Modification	11/01/2011	BC-6	Belt Conveyor	TC- PE6	PE	TP-12	N/A
Modification	11/01/2011	ST-2	Stacking Tube	SL- FE36	FE	TP-12	N/A
Modification	11/01/2011	TO- CC2	Dozer to Feeder	TO- CC2	UC	TP-13	N/A
Modification	11/01/2011	BC-7	Belt Conveyor	TC- PE7	PE	TP-14	N/A
Modification	11/01/2011	BC-7	Belt Conveyor to Bin 1	SL- FE9	FE	TP-15	N/A
Modification	11/01/2011	TP-16	Bin 1 to Rail	LR- PE16	PE	TP-16	N/A
Modification	11/01/2011	BC-8	Prep Plant to BC	TC- FE5	FE	TP-17	N/A
Modification	11/01/2011	BC-8	BeltConveyor	TC- PE9	PE	TP-18	N/A
Modification	11/01/2011	BC-8	Belt Conveyor to Bin 2	SL- FE10	ŦŦ	TP-18	N/A

¹Number as 1s, 2s, 3s ... or other appropriate designation. Must match process flow diagram.

² Number as 1c, 2c, 3c...or other appropriate designation. Must match process flow diagram. ³ Number as 1e, 2e, 3e...or other appropriate designation. Must match process flow diagram.

⁴ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

Type Change,	Wate of	民	Emissions Unit (Source)	Air	AirPollutionControlDevice		Emission Point
Modification, or Removal)	Change	No.1	Source	No.2	Device Type	Ne.3	Emission Type ⁴
Modification	11/01/2011	TP-28	Bin 2 to Belt Conveyor	LO- UC4	nc	TP-28	N/A
Modification	11/01/2011	BC-14	Belt Conveyor	TC- PE19	PE	TP-29	N/A
Modification	11/01/2011	BC-14	Belt Conveyor to Bin 3	SL- FE11	纽	TP-29	N/A
Modification	11/01/2011	TP-30	Bin 3 to Pan	LR- PE30	PE	TP-30	N/A
Modification	11/01/2011	TP-31	Pan to Refuse Pile	Z	None	TP-31	N/A
Modification	06/30/2008	BC-9	Double Deck Screen 3 to Belt Conveyor	CS- FE2	П	TP-19	N/A
Modification	06/30/2008	BC-9	Belt Conveyor	TC- PE10	EA	TP-20	N/A
Modification	06/30/2008	BC-10	Bin 2 to Belt Conveyor – IDLE	LO- UC4	nc	TP-21	N/A
Modification	06/30/2008	BC-10	Belt Conveyor – IDLE	TC- PE12	PE	TP-22	N/A
Modification	06/30/2008	BC-11	Belt Conveyor - IDLE	TC- PE13	PE	TP-23	N/A

¹Number as 1s, 2s, 3s...or other appropriate designation. Must match process flow diagram.

² Number as 1c, 2c, 3c ...or other appropriate designation. Must match process flow diagram. ³ Number as 1e, 2e, 3e ...or other appropriate designation. Must match process flow diagram.

⁴ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

Type Change,	Date of	E B	Emissions Unit (Source)	Air	AirPollutionControlDevice		Emission Point
Modification, or Removal)	Change	No.1	Source	No.2	Device Type	No.	Emission Type
Modification	06/30/2008	BC-13	Belt Conveyor	TC- PE17	PE	TP-25	N/A
Modification	06/30/2008	PE-18	Radial Stacker to OS-3	Z	None	TP-25	N/A
Modification	11/22/2016	TP-26	OS-3 to Loader	Z	None	TP-26	N/A
Modification	11/01/2011	TP-27	Loader to Truck	Z	None	TP-27	N/A
Modification	11/01/2011	TP-32	Truck Dump to OS-4	Z	None	TP-32	N/A
Modification	11/01/2011	TP-33	OS-4 to Loader	Z	None	TP-33	N/A
Modification	11/01/2011	TP-34	Loader to CR-2	CS- PE34	PW	TP-34	N/A
Modification	11/01/2011	TP-35	CR-2 to Belt Conveyor	TC- PE20	PE	TP-35	N/A
Modification	11/01/2011	BC-15	Belt Conveyor	TC- PE20	PE	TP-35	N/A
Modification	11/01/2011	TP-36	Belt Conveyor to OS-5	Z	None	TP-36	N/A
Modification	11/01/2011	TP-37	OS-5 to Loader	Z	None	TP-37	N/A

¹Number as 1s, 2s, 3s ... or other appropriate designation. Must match process flow diagram.

² Number as 1c, 2c, 3c...or other appropriate designation. Must match process flow diagram. ³ Number as 1e, 2e, 3e...or other appropriate designation. Must match process flow diagram.

⁴ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

Type Change,	Date of	Ē	Emissions Urit (Source)	Air	AirPollutionControlDevice		Emission Point
Modification, or Removal)	Change	Z o Z	Source	No.2	Device Type	A. A.	Emission Type ⁴
Modification	11/01/2011	TP-38	Loader to Truck	Z	None	TP-38	N/A
Modification	11/01/2011	TP-39	Truck to Refuse Pile	Z	None	TP-39	N/A
Modification	11/01/2011	TP-40	CR-2 to Belt Conveyor	TC-PE21	PE	TP-40	N/A
Modification	11/01/2011	BC-16	Belt Conveyor	TC-PE21	PE	TP-40	N/A
Modification	11/01/2011	TP-41	Belt Conveyor to OS-6	Z	None	TP-41	N/A
Modification	11/01/2011	TP-42	OS-6 to OS-1 by Dozer	Z	None	TP-42	N/A
Modification	11/22/2016	BC-19	Prep Plant to Belt Conveyor	TC- PE24	PE	TP-43	N/A
Modification	11/01/2011	TP-43	Belt Conveyor 19 to Belt Conveyor 17	TC- PE22	PE	TP-43	N/A
Modification	11/22/2016	BC-17	Belt Conveyor	TC- PE22	PE	TP-44	N/A
Modification	11/22/2016	TP-44	Belt Conveyor 17 to Belt Conveyor 18	TC- PE23	PE	TP-44	N/A
Modification	11/22/2016	BC-18	Belt Conveyor	TC-PE23	PE	TP-48	N/A
Modification	11/22/2016	TP-48	BC-18 to Radial Stacker	TC-PE48	PE	TP-48	N/A

¹Number as 1s, 2s, 3s ... or other appropriate designation. Must match process flow diagram.

² Number as 1c, 2c, 3c...or other appropriate designation. Must match process flow diagram. ³ Number as 1e, 2e, 3e...or other appropriate designation. Must match process flow diagram.

⁴ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

Date of		Emissions Unit (Source)	Air	AirPollutionControlDevice		Emission Point
No.]	Source	No.2	Device Type	Nes	Emission Type
BC-20		Radial Stacker	TC-PE48	PE	TP-48	N/A
TP-45	T 1	Belt Conveyor to OS-7	Z	None	TP-45	N/A
TP-46		OS-7 to Underground Feeder	LO-UC3	UC	TP-46	N/A
TP-47		Bin 2 to Truck	UD-PE47	PW	TP-47	N/A
TP-49		BC-6 to BC-21	TC-PE49	PE	TP-49	N/A
BC-21		Radial Stacker	TC-PE50	PE	TP-50	N/A
TP-50		BC-21 to OS-8	TC-PE16	PE	TP-50	N/A
TP-51		OS-8 to Loader	z	None	TP-51	N/A
TP-52		Loader to Truck	Z	None	TP-51	N/A
TP-49		BC-6 to BC-13	TC-PE49	PE	TP-49	N/A
ST-3		Stacking Tube	SL-FE36	丑五	TP-53	N/A

¹Number as 1s, 2s, 3s ...or other appropriate designation. Must match process flow diagram.

² Number as 1c, 2c, 3c... or other appropriate designation. Must match process flow diagram. ³ Number as 1e, 2e, 3e... or other appropriate designation. Must match process flow diagram.

⁴ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

EMISSIONS SUMMARY

Name of applicant: Name of plant: Wolf Run Mining Company

Controlled PM-10

Sentinel Mine

Particulate Matter or PM (for 45CSR14 Major Source Determination)

ſ	Uncon	trolled PM	Contro	olled PM
	lb/hr	TPY	lb/hr	TPY
	FUGITI\	/E EMISSIONS	The state of the s	ي المحادث و المحادث
Stockpile Emissions	2.16	9.46	0.54	2.35
Unpaved Haulroad Emissions	303.60	565.87	91.08	169.76
Paved Haulroad Emissions	0.00	0.00	0.00	0.00
Fugitive Emissions Total	305.76	575.32	91.62	172.11
Equipment Emissions	444.00	URCE EMISSIONS 612.00	92.40	133.20
Transfer Point Emissions	38.45	52.35	13.85	16.85
Point Source Emissions Total*	482.45	664.35	106.25	150.05
Note: Point Source Total Controlled PM TPY	emissions is used for 45	CSR14 Major Source deter	mination (see below)	A POST OF THE POST
Facility Emissions Total	788,21	1,239.68	197.87	322.16

*Facility Potential to Emit (PTE) (Baseline Emissions)		150.05
(Based on Point Source Total controlled PM TPY emissions from above)	ENTER ON LINE 26 O	F APPLICATION

Particulate Matter under 10 microns, or PM-10 (for 45CSR30 Major Source Determination)

	FUGITIV	E EMISSIONS		
Stockpile Emissions	1.01	4.44	0.25	1.10
Unpaved Haulroad Emissions	89.61	167.02	26.88	50.11
Paved Haulroad Emissions	0.00	0.00	0.00	0.00

Uncontrolled PM-10

	POINT SOL	JRCE EMISSIONS		
Equipment Emissions	208.68	287.64	43.43	62.60
Transfer Point Emissions	18.19	24.76	6.55	7.97
Point Source Emissions Total*	226.87	312.40	49.98	70.57

11	t i			
Facility Emissions Total	0.47.40	483.87	77.40	1 404.70
Il Facility Emissions Total	317.49	483.87	(/.12	121.79
I donity Enhancing Total	017110			

Include all information for each emission source and transfer point as listed in the permit application.

Name of applicant: Name of plant: Wolf Run Mining Company Sentinel Mine

1. CRUSHING AND SCREENING (including all primary and secondary crushers and screens)

1a. PRIMARY CRUSHING

Primary Crusher ID Number	Description	1	n Material ng Capacity	Control Device Un Number	Control Efficiency %
	en de la Bartin compresa que memo en en 1900 e en entre de la Regional de la Regi			and the same of the	
CR-1	Double Roll Crusher	1,350	3,600,000	CO-FET	80
CR-2	Double Roll Crusher	600	3,600,000	CS-PE34	50
				_	

10. SECUNDARY AND TERTIARY CRUSHING

Secondary		Maximu	m Material	Control	Control
& Fertiary	Description	Processir	ng Capacity	Device	Ltticlency
Crusher ID	B 6565.1pt 6.11	TPH	(IPY	וט Number	%
			:		
				-	
					
				7	

TC. SUKEENING

Secondary & Lertiary Crusher ID	Maximum Material Description Processing Capacity PH TPY		ng Capacity	Control Device ID Number	Control Efficiency %
5-1	ROM Double Deck Screen	1,350	3,000,000	CS-FE1	80
S-2 S-3	ROM Double Deck Vibrating Screen ROM Double Deck Vibrating Screen	1,350 1,350	3,000,000	CS-FE2	80
	KOW Double Deck Vibrating Scieen				
		-			
		:			
	-				

2. TRANSFER POINTS (including all conveyor transfer points, equipment transfer points etc.) PM PM-10

		PIVI	PIVI-TU
k=	Particle Size Multiplier (dimensionless)	0.74	0.35
U=	Mean Wind Speed (mph)	7	

Transfer	Transfer Point Description	Material	n	Vlaximum	Control	Contr
Point	Include ID Numbers of all conveyors,	Moisture	-	ansfer Rate	Device	Efficie
ID No.	crushers, screens, stockpiles, etc. involved	Content %	TPH	TPY	ID Number	%
TP-1	BC-1 To CR-1	4	1,350	3,600,000	CS-FE1	80
TP-2	CR-1 To S-1	4	1,350	3,600,000	CS-FE1	80
TP-3	S-1 To BC-2	4	1,350	3,600,000	CS-FE1	80
TP-4	BC-2 To S-2	4	1,350	3,600,000	CS-FE2	80
TP-4A	S-2 To S-3	4	1,350	3,600,000	CS-FE2	80
TP-5	S-3 To BC-3	5	1,350	3,600,000	CS-FE2	80
TP-6	BC-3 To ST-1 (OS-1)	5	1,350	3,600,000	SL-FE35	80
TP-7	OS-1 To Feeder	5	600	4,400,000	LO-UC1	80
TP-8	Feeder To BC-4	5	600	4,400,000	TC-FE4	80
TP-9	BC-4 To Prep Plant	5	600	4,400,000	TC-FE5	80
TP-10	Prep Plant To BC-5	5	800	4,400,000	TC-FE5	80
ΓP-11	BC-5 To BC-6	5	800	4,400,000	TC-FE6	80
ΓP-12	BC-6 To ST-2 (OS-2)	5	800	3,600,000	SL-FE36	80
ΓP-13	OS-2 To Feeder	5	2,500	3,600,000	LO-UC2	80
ГР-14	Feeder To BC-7	5	2,500	4,400,000	TC-FE8	80
ГР-15	BC-7 To BS-1	5	2,500	4,400,000	SL-FE9	80
гР-16	BS-1 To Rail	5	2,500	4,400,000	LR-PE16	50
ГР-17	Prep Plant To BC-8	5	400	1,980,000	TC-FE5	80
ГР-18	BC-8 To BS-2	5	400	2,280,000	SL-FE10	80
ГР-19	S-3 To BC-9	5	244	300,000	CS-FE2	80
ΓP-20	BC-9 To BC-8	5	244	300,000	TC-PE11	50
ΓP-21	BS-2 To BC-10	5	244	0	LO-UC4	80
ГР-22	BC-10 To BC-11 (IDLE)	5	244	0	TC-PE13	50
ГР-23	BC-11 To BC-12 IDLE)	5	244	0	TC-PE14	50
ГР-26	Dozer to UG Feeder	5	360	800,000	N	0
ΓP-28	BS-2 To BC-14	5	400	1,980,000	LO-UC4	80
TP-29	BC-14 To BS-3	5	400	1,980,000	SL-FE11	80
TP-30	BS-3 To Pan	5	400	1,980,000	LR-PE30	50
TP-31	Pan To Refuse Pile	5	400	1,980,000	N	0
TP-32	TD-1 To OS-4	5	360	800,000	N	0
TP-33	OS-4 To Loader	5	360	800,000	N	0
TP-34	Loader To CR-2	5	360	800,000	CS-PE34	50
TP-35	CR-2 To BC-15	5	360	400,000	TC-PE20	50
P-36	BC-15 To OS-5	5	360	400,000	N	0
P-37	OS-5 To Loader	5	360	400,000	N	0
P-38	Loader To Truck	5	360	400,000	N	0
P-39	Truck To Refuse Pile	5	360	400,000	N	0
P-40	CR-2 To BC-16	5	360	800,000	TC-PE21	50
P-41	BC-16 To OS-6	5	360	800,000	N	0
P-42	OS-6 To OS-1 by dozer	5	360	800,000	N	0
P-43	BC-19 To BC-17	5	360	800,000	TC-PE22	50
P-44	BC-17 To BC-18	5	360	800,000	TC-PE23	50
P-45	BC-20 To OS-7	5	360	800,000	N	0
P46	OS-7 To Feeder	5	360	800,000	LO-UC3	80
P-47	BS-2 To Truck	5	150	400,000	UD-PE47	50
P-48	BC-18 to Radial Stacker BC-20	5	360	800,000	TC-PE48	50
P-49	BC-6 to Plow to either BC-13/BC-21	5	360	800,000	TC-PE49	50
P-50	BC-21 to OS-8	5	360	800,000	TC-PE50	50
P-51	OS-8 to Loader	5	360	800,000	N	0
P-52	Loader to Truck	5	360	800,000	N	0
P-53	BC-13 to OS-3	5	360	800,000	N	0

3. WIND EROSION OF STOCKPILES (including all stockpiles of raw coal, clean coal, coal refuse, etc.)

0. 501112	Entodion of orders in the first and an ento-	
p =	number of days per year with precipitation >0.01 inch	146
f=	percentage of time that the unobstructed wind speed	20
	exceeds 12 mph at the mean pile height	

Source	Stockpile	Silt	Stockpile	Control	Control
ID No.	Description	Content of	base area	Device	Efficiency
		Material %	Max. sqft	ID Number	%
OS-1	Sized Coal Stockpile	5	37,500	SW-WS1	75
OS-2	Clean Coal Stockpile	5	37,500	SW-WS14	7 5
OS-3	Clean Coal Stockpile	5	46,875	SW-WS3	75
Bin 1	Clean Coal Bin	5	600	SW-FE9	100
Bin 2	Refuse Coal Bin	5	600	SW-FE10	10 0
Bin 3	Refuse Coal Bin	5	600	SW-FE11	100
OS-4	aw Coal From Truck Dum	5	37,500	SW-WS9	75
OS-5	Sized Coal Stockpile	5	37,500	SW-W\$10	75
OS-6	Sized Coal Stockpile	5	37,500	SW-WS2	75
OS-7	Sized Coal Stockpile	5	37,500	SW-WS15	75
OS-8	Clean Coal Stockpile	5	46,875	SW-WS16	75
		1			

4. UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

s =	silt content of road surface material (%)	10
p =	number of days per year with precipitation >0.01 inch	146
M _{dry} =	surface material moisture content (%) - dry conditions	0.2

		Number	Mean	Mean	Miles	Maximum	Maximum	Control	Control
ltem	Description	of	Vehicle	Vehicle	per	Trips Per	Trips Per	Device	Efficiency
Number		wheels	Weight(tons)	Speed (mph)	Trip	Hour	Year	ID Number	%
1	Dozer For Sized Coal Transfer	2	32	3	0.04	97	#######	HR-WS4	
2	Dozer For Clean Coal Transfer	2	32	3	0.04	97		HR-WS5	
3	Loader To Truck	4	32	3	0.04	30		HR-WS6	
4	Pan To Spread Refuse	4	50	4	0.1	50		HR-WS7	
5	Dozer For Sized Coal Transfer	2	32	3	0.04	97		HR-WS9	
6	Loader To Truck	4	32	3	0.04	40		HR-WS10	
7	Dozer For Midlings To Feeder	2	32	3	0.04	48	,	HR-WS1	
8	Truck To Refuse	18	25	10	0.1	20	40,000	\$12 & HR	70
9									

5. INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

sL=	road surface silt loading, (g/ft^2)	70
P =	number of days per year with precipitation >0.01 inch	146

ltem Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips Per Hour	Maximum Trips Per Year	Control Device ID Number	Control Efficiency %
1	and the state of t	'é					
. 2							
3					<u> </u>		
4							
5 6					1		
7							
8							
ì				i	į.		

1a. Primary Crushing

Primary		P	M		PM-10			
Crusher	Uncor	Uncontrolled		rolled	Uncor			
ID Number	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
							101153	
CR-1	27.000	36.000	5.400	7.200	12.690	16.920	2.538	3.384
CR-2	12.000	36.000	6.000	18.000	5.640	16.920	2.820	8.460
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TOTAL	39.000	72.000	11.400	25.200	18.330	33.840	5.358	11.844

1b. Secondary and Tertiary Crushing

Secondary		F	M			PN	1-10	
& Tertiary	Uncor	ntrolled	Cont	rolled	Unco	ntrolled	Controlled	
Crusher ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
						143(3) 1150		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
					er d'anel -			
TOTAL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

1c. Screening

		P	M			PM	l-10		
Screen	Uncor	Uncontrolled		rolled	Uncor	ntrolled	Cont	rolled	
ID Number	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
					4 1 44				
S-1	135.000	180.000	27.000	36.000	63.450	84.600	12.690	16.920	
S-2	135.000	180.000	27.000	36.000	63.450	84.600	12.690	16.920	
S-3	135.000	180.000	27.000	36.000	63.450	84.600	12.690	16.920	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
TOTAL	405.000	540.000	81.000	108.000	190.350	253.800	38.070	50.760	

Crushing	ishing PM					PM-10				
and	Uncontrolled		Controlled		Uncontrolled		Controlled			
Screening	lb/hr	TPY	ib/hr	TPY	lb/hr	TPY	lb/hr	TPY		
TOTAL	444.000	612.000	92.400	133.200	208.680	287.640	43.428	62.604		

EMISSION FACTORS

source: Air Pollution Engineering Manual and References (Ib/ton of material throughput)

PM	
Primary Crushing	0.02
Tertiary Crushing	0.06
Screening	0.1

PM-10	
Primary Crushing	0.0094
Tertiary Crushing	0.0282
Screening	0.047

2. Emissions From TRANSFER POINTS

Transfer		P	M	PM-10				
Point	Uncor	ntrolled	Controlled		Uncon	trolled	Contr	olled
ID No.	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
The second of th	a galagean into the gas strongs also and the color of the colors of the	and the second filling the second filling the						
TP-1	1.876	2.501	0.375	0.500	0.887	1.183	0.177	0.237
TP-2	1.876	2.501	0.375	0.500	0.887	1.183	0.177	0.237
TP-3	1.876	2.501	0.375	0.500	0.887	1.183	0.177	0.237
TP-4	1.876	2.501	0.375	0.500	0.887	1.183	0.177	0.237
TP-4A	1.876	2.501	0.375	0.500	0.887	1.183	0.177	0.237
TP-5	1.373	1.830	0.275	0.366	0.649	0.866	0.130	0.173
TP-6	1.373	1.830	0.275	0.366	0.649	0.866	0.130	0.173
TP-7	0.610	2.237	0.122	0.447	0.289	1.058	0.058	0.212
TP-8	0.610	2.237	0.122	0.447	0.289	1.058	0.058	0.212 0.212
TP-9	0.610	2.237	0.122	0.447	0.289	1.058	0.058 0.077	0.212
TP-10 TP-11	0.813	2.237	0.163	0.447	0.385	1.058 1.058	0.077	0.212
TP-11	0.813	1.830	0.163	0.447	0.385 0.385	0.866	0.077	0.212
TP-13	0.813 2.542	1.830	0.163 0.508	0.366	1.202	0.866	0.077	0.173
TP-13	2.542	2.237	0.508	0.366	1.202	1.058	0.240	0.173
TP-14	2.542	2.237	0.508	0.447	1.202	1.058	0.240	0.212
TP-16	2.542	2.237	1.271	1.118	1.202	1.058	0.601	0.529
TP-17	0.407	1.007	0.081	0.201	0.192	0.476	0.038	0.025
TP-18	0.407	1.159	0.081	0.232	0.102	0.548	0.038	0.110
TP-19	0.248	0.153	0.050	0.031	0.117	0.072	0.023	0.014
TP-20	0.248	0.153	0.124	0.076	0.117	0.072	0.059	0.036
TP-21	0.248	0.000	0.050	0.000	0.117	0.000	0.023	0.000
TP-22	0.248	0.000	0.124	0.000	0.117	0.000	0.059	0.000
TP-23	0.248	0.000	0.124	0.000	0.117	0.000	0.059	0.000
TP-26	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-28	0.407	1.007	0.081	0.201	0.192	0.476	0.038	0.095
TP-29	0.407	1.007	0.081	0.201	0.192	0.476	0.038	0.095
TP-30	0.407	1.007	0.203	0.503	0.192	0.476	0.096	0.238
TP-31	0.407	1.007	0.407	1.007	0.192	0.476	0.192	0.476
TP-32	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-33	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-34	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-35	0.366	0.203	0.183	0.102	0.173	0.096	0.087	0.048
TP-36	0.366	0.203	0.366	0.203	0.173	0.096	0.173	0.096
TP-37	0.366	0.203	0.366	0.203	0.173	0.096	0.173	0.096
TP-38	0.366	0.203	0.366	0.203	0.173	0.096	0.173	0.096
TP-39	0.366	0.203	0.366	0.203	0.173	0.096	0.173	0.096
TP-40	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-41	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-42	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-43	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-44	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-45	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP46	0.366	0.407	0.073	0.081	0.173	0.192	0.035	0.038
TP-47	0.153	0.203	0.076	0.102	0.072	0.096	0.036	0.048
TP-48 TP-49	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096 0.096
	0.366 0.366	0.407	0.183	0.203	0.173	0.192	0.087 0.087	0.096
TP-50		0.407	0.183 0.366	0.203 0.407	0.173 0.173	0.192 0.192	0.087	0.096
TP-51	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-52	0.366 0.366	0.407 0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-53 0	0.000	0.407	0.000	0.000	0.000	0.192	0.000	0.000
	0.000	0.000	0.000	0.000	U.000	0.000	0.000	0.000

2. Emissions From TRANSFER POINTS (continued)

Transfer		PI	И		PM-10			
Point	Uncontrolled		Controlled		Uncontrolled		Controlled	
ID No.	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
						17		
TOTALS	38.450	52.355	13.854	16.850	18.186	24.762	6.553	7.970

Source:

AP42, Fifth Edition, Revised 11/2006

13.2.4 Aggregate Handling and Storage Piles

Emissions From Batch Drop

 $E = k^*(0.0032) * [(U/5)^1.3]/[(M/2)^1.4] = pounds/ton$

Where:		PM	PM-10
k =	Particle Size Multiplier (dimensionless)	0.74	0.35
U =	Mean Wind Speed (mph)		
M =	Material Moisture Content (%)		

Assumptions:

k - Particle size multiplier

For PM (< or equal to 30um) k = 0.74For PM-10 (< or equal to 10um) k = 0.35

Emission Factor

For PM

F=

\$|\$88*(0.0032)*((((Inputs!\$|\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1.4))

=lb/ton

For PM-10

E=

\$J\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1.4))

=lb/ton

For lb/hr

[lb/ton]*[ton/hr] = [lb/hr]

For Tons/year

[lb/ton]*[ton/yr]*[ton/2000lb] = [ton/yr]

3. Emissions From WIND EROSION OF STOCKPILES

Stockpile	PM					PM-	-10	
ID No.	Uncontrolled		Controlled		Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
OS-1	0.253	1.106	0.063	0.277	0.119	0.520	0.030	0.130
OS-2	0.253	1.106	0.063	0.277	0.119	0.520	0.030	0.130
OS-3	0.316	1.383	0.079	0.346	0.148	0.650	0.037	0.162
Bin 1	0.004	0.018	0.000	0.000	0.002	0.008	0.000	0.000
Bin 2	0.004	0.018	0.000	0.000	0.002	0.008	0.000	0.000
Bin 3	0.004	0.018	0.000	0.000	0.002	0.008	0.000	0.000
OS-4	0.253	1.106	0.063	0.277	0.119	0.520	0.030	0.130
OS-5	0.253	1.106	0.063	0.277	0.119	0.520	0.030	0.130
OS-6	0.253	1.106	0.063	0.277	0.119	0.520	0.030	0.130
OS-7	0.253	1.106	0.063	0.277	0.119	0.520	0.030	0.130
OS-8	0.316	1.383	0.079	0.346	0.148	0.650	0.037	0.162
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TOTALS	2.159	9.456	0.537	2.351	1.015	4.444	0.252	1.105

Source:

Air Pollution Engineering Manual

Storage Pile Wind Erosion (Active Storage)

E = 1.7*[s/1.5]*[(365-p)/235]*[f/15] = (lb/day/acre)

Where:

2 CF 1 2 THE PROPERTY 1	
s =	silt content of material
p =	number of days with >0.01 inch of precipitation per year
f =	percentage of time that the unobstructed wind speed
	exceeds 12 mph at the mean pile height

Emission Factors

For PM

E = (1.7)*((Inputs!F147)/1.5)*((365-Inputs!I139)/235)*((Inputs!I140)/15)

For PM-10

E=0.47*(1.7)*((Inputs!F147)/1.5)*((365-Inputs!I139)/235)*((Inputs!I140)/15)

For lb/hr

[lb/day/acre]*[day/24hr]*[base area of pile (acres)] = lb/hr

For Ton/yr

[lb/day/acre]*[365day/yr]*[Ton/2000lb]*[base area of pile (acres)] = Ton/yr

4. Emissions From UNPAVED HAULROADS

Item		Р	M			PM-	10	
No.	Uncontrolled		Controlled		Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	48.55	172.06	14.57	51.62	14.33	50.79	4.30	15.24
2	48.55	125.14	14.57	37.54	14.33	36.94	4.30	11.08
3	15.02	28.60	4.50	8.58	4.43	8.44	1.33	2.53
4	76.48	134.61	22.95	40.38	22.58	39.73	6.77	11.92
5	48.55	31.28	14.57	9.39	14.33	9.23	4.30	2.77
6	20.02	40.04	6.01	12.01	5.91	11.82	1.77	3.55
7	24.03	11.73	7.21	3.52	7.09	3.46	2.13	1.04
8	22.40	22.40	6.72	6.72	6.61	6.61	1.98	1.98
TOTALS	303.60	565.87	91.08	169.76	89.61	167.02	26.88	50.11

Source:

AP42, Fifth Edition, Revised 11/2006

13.2.2 Unpaved Roads

Emission Estimate For Unpaved Haulroads at Industrial Sites (equation 1)

 $E= k*((s/12)^a)*((W/3)^b) = lb/vmt$

Where:

			PM	PM-10
	k =	particle size multiplier	4.90	1.50
	a =	empirical constant	0.7	0.9
	b =	empirical constant	0.45	0.45
9	P=	number of days per year with precipitation >0.01 inch	157	

Emission Factors

For PM

E=

((\$I\$35)*(((Inputs!\$I\$163)/12)^(\$I\$36))*(((Inputs!H171)/3)^\$I\$37))*((365-\$I

For PM-10

E=

((\$J\$35)*(((Inputs!\$I\$163)/12)^(\$J\$36))*(((Inputs!H171)/3)^\$J\$37))*((365-

For lb/hr

(lb/vmt)*(miles per trip)*(Max trips per hour)

For Ton/yr

(lb/vmt)*(miles per trip)*(Max trips per year)*(1/2000)

5. Emissions From INDUSTRIAL PAVED HAULROADS

Item		PI	М		PM-10				
No.	Uncontrolled		Controlled		Uncon	Uncontrolled		rolled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
TOTALS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

Source:

AP42, Fifth Edition, Revised 11/2006 13.2.1 PAVED ROADS

Emission Estimate For Paved Haulroads

 $E = [k * (sL/2)^0.65 * (W/3)^1.5 - C] * (1 - (P/4*N) = lb / Vehicle Mile Traveled (VMT))$

Where:

	The same and the s	PM	PM-10
k =	particle size multiplier	0.082	0.016
sL =	road surface silt loading, (g/ft^2)	70	
P=	number of days per year with precipitation >0.01 inch	146	
N =	number of days in averaging period	365	
C=	factor for exhaust, brake wear and tire wear	0.0047	0.0047

Emission Factors

For PM

E=

(\$I\$34*(((\$I\$35)/2)^0.65)*(((Inputs!G190)/3)^1.5)-(\$I\$38))*(1-((Inputs!\$I\$18

For PM-10

E=

(\$J\$34)*(((\$I\$35)/2)^0.65)*(((Inputs!G190)/3)^1.5))-(\$I\$38))*(1-((Inputs!\$I\$

For lb/hr

(lb/vmt)*(miles per trip)*(Max trips per hour)

For Ton/yr

(lb/vmt)*(miles per trip)*(Max trips per year)*(1/2000)

CLEAN COAL

RAW COAL

REFUSE

SIZED COAL

Mec & 3/16

PROCESS FLOW DIAGRAM

WOLF RUN MINING COMPANY SENTINEL PREPARATION PLANT

DRAWN BY: RS CREATED: MARCH 2014 REVISED: OCTOBER 2016 (PC)

PREPARED BY: SURVEYOR AND ASSOCIATES, INC. KINGWOOD, WEST VIRGINIA

MFN 00-33302

SCALE: SCHEMATIC

PLEASANT DISTRICT BARBOUR COUNTY WEST VIRGINIA

Roberts, Daniel P

I.D. No. <u>001-00005</u> Reg. <u>R13-0190</u> Company Wolf Run Mining Company Sentinel Pren Plant 6.

From:

Roberts, Daniel P

Sent:

Wednesday, December 14, 2016 8:16 AM

To:

'Nair, Greg'

Subject:

RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel

Muliche

Preparation Plant

Greg,

Hey. Sorry, I just missed your email yesterday afternoon. Everything looks good. Go with it.

Dan

From: Nair, Greg [mailto:GNair@archcoal.com]
Sent: Tuesday, December 13, 2016 4:11 PM
To: Roberts, Daniel P < Daniel.P.Roberts@wv.gov>

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Dan,

Disregard the earlier email. Here is the corrected version. Does this look okay?

Greg Nair

Arch Coal, Inc.

Manager Surface Mine Planning Northern Appalachia Operations

100 Tygart Drive Grafton, WV 26354

Office Direct: (304) 265-9778 Mobile: (304) 290-3202 Email: gnair@archcoal.com

From: Roberts, Daniel P [mailto:Daniel.P.Roberts@wv.gov]

Sent: Tuesday, December 13, 2016 4:08 PM

To: Nair, Greq

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Greg,

You are welcome. Sounds like a plan. Let me know if any other questions pop up as you make the corrections.

Dan

From: Nair, Greg [mailto:GNair@archcoal.com]
Sent: Tuesday, December 13, 2016 3:55 PM
To: Roberts, Daniel P < Daniel.P.Roberts@wv.gov>

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Dan,

Thanks for reviewing the documents that I emailed to you. Thanks for providing the comments below. Those are easily correctable. I have started the process of correcting. I am hopeful to finalize the appropriate changes throughout the application tomorrow and place in the mail to your attention.

Greg Nair
Arch Coal, Inc.
Manager Surface Mine Planning
Northern Appalachia Operations
100 Tygart Drive

Office Direct: (304) 265-9778 Mobile: (304) 290-3202 Email: gnair@archcoal.com

Grafton, WV 26354

From: Roberts, Daniel P [mailto:Daniel.P.Roberts@wv.gov]

Sent: Tuesday, December 13, 2016 3:32 PM

To: Nair, Greq

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Greg,

Hey. I reviewed the revised Process Description and Process Flow Diagram that you sent me and offer the following comments:

- 1. In the Process Description Clean Coal Circuit, the second tab references BC-19 as being fed by BC-5 and then does not refer to it again while the 15th tab describes the middlings exiting the prep plant on BC-19, to BC-18, to BC-20 and finally onto OS-7. It appears that the reference to BC-19 should be deleted from the second tab.
- 2. In the Process Description Clean Coal Circuit, the fifth tab contains a typo and reads "... to stacking tub (ST-2)..." and should read "... to stacking tube (ST-2)..."
- 3. In the Process Description Clean Coal Circuit, the 11th tab describes the raw coal entering the underground feeder, but not where it goes after that. It appears that is fed onto BC-7 also, the same as the other underground feeders.
- 4. In the Process Description Refuse Circuit, the fifth tab does not include any description of how refuse is loaded from BS-2 to trucks.

Dan

From: Nair, Greg [mailto:GNair@archcoal.com]
Sent: Monday, December 12, 2016 1:30 PM

To: Roberts, Daniel P < Daniel.P.Roberts@wv.gov>

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Dan,

I have revised the narrative Attachment G process description and the process flow diagram and both are attached for your review. If you find these acceptable then I will complete the remaining comments and get everything sent out to you.

Thanks.

Greg Nair

Arch Coal, Inc.

Manager Surface Mine Planning

Northern Appalachia Operations
100 Tygart Drive

Grafton, WV 26354

Office Direct: (304) 265-9778

Mobile: (304) 290-3202 Email: gnair@archcoal.com

From: Roberts, Daniel P [mailto:Daniel.P.Roberts@wv.gov]

Sent: Thursday, December 08, 2016 9:58 AM

To: Nair, Greg

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Greg,

Hey. I am in the office today and should be near my desk most of the day. If it is alright with you, can I get familiar with the letter and its contents again and just call you in about 15 minutes or so? Or give me a time to call later in the day...

Dan

From: Nair, Greg [mailto:GNair@archcoal.com]
Sent: Wednesday, December 7, 2016 2:00 PM
To: Roberts, Daniel P < Daniel.P.Roberts@wv.gov>

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Dan,

I have a question or two on the comments. When would be a good time for me to call and discuss with you?

Greg Nair
Arch Coal, Inc.
Manager Surface Mine Planning
Northern Appalachia Operations
100 Tygart Drive

Roberts, Daniel P

From: Sent: Nair, Greg <GNair@archcoal.com> Monday, December 12, 2016 1:30 PM

To:

Roberts, Daniel P

Subject:

RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel

Preparation Plant

Attachments:

PROCESS FLOW DIAGRAM_10.16.pdf; Attachment G 12.12.16.pdf

Dan,

I have revised the narrative Attachment G process description and the process flow diagram and both are attached for your review. If you find these acceptable then I will complete the remaining comments and get everything sent out to you.

Thanks.

Greg Nair
Arch Coal, Inc.
Manager Surface Mine Planning
Northern Appalachia Operations
100 Tygart Drive
Grafton, WV 26354

Office Direct: (304) 265-9778 Mobile: (304) 290-3202 Email: gnair@archcoal.com

From: Roberts, Daniel P [mailto:Daniel.P.Roberts@wv.gov]

Sent: Thursday, December 08, 2016 9:58 AM

To: Nair, Greg

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Greg,

Hey. I am in the office today and should be near my desk most of the day. If it is alright with you, can I get familiar with the letter and its contents again and just call you in about 15 minutes or so? Or give me a time to call later in the day...

Dan

From: Nair, Greg [mailto:GNair@archcoal.com]
Sent: Wednesday, December 7, 2016 2:00 PM
To: Roberts, Daniel P < Daniel.P.Roberts@wv.gov>

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Dan,

I have a question or two on the comments. When would be a good time for me to call and discuss with you?

Greg Nair
Arch Coal, Inc.
Manager Surface Mine Planning
Northern Appalachia Operations
100 Tygart Drive
Grafton, WV 26354

Office Direct: (304) 265-9778 Mobile: (304) 290-3202 Email: gnair@archcoal.com

From: Roberts, Daniel P [mailto:Daniel.P.Roberts@wv.gov]

Sent: Friday, November 18, 2016 3:10 PM

To: Nair, Greg

Cc: McKeone, Beverly D

Subject: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

RE: Application Status: Incomplete
Wolf Run Mining Company
Sentinel Preparation Plant

Permit Application No. R13-0119D

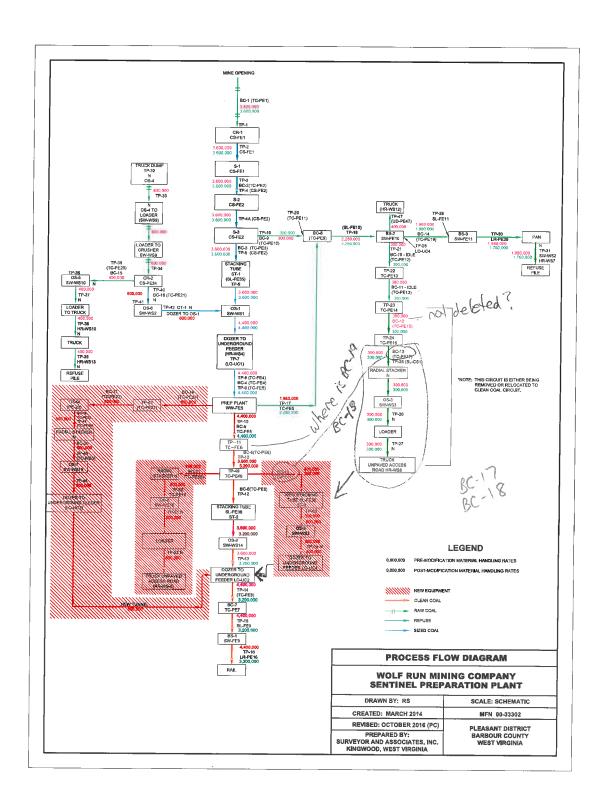
Plant ID No. 001-00005

Mr. Nair:

Your application for a modification permit for a wet wash coal preparation plant was received by this Division on August 17, 2016 and assigned to the writer for review. The applicant place a Class I legal advertisement in The Barbour Democrat on August 17, 2016. The DAQ received an original affidavit of publication on September 1, 2016. In an email dated October 21, 2016, the DAQ deemed the application to be incomplete. On November 1, 2016, the DAQ received a response with corrected application pages. Upon further review of said application and additional information received, it has been determined that the application as submitted is still incomplete based on the following items:

1. On Attachment F – Process Flow Diagram, the diagram pictures refuse conveyor BC-11 transferring refuse onto clean coal conveyor BC-19. BC-19 is supposed to be fed clean coal from conveyor BC-6. Please make corrections as necessary.

Also, where does the refuse go after belt conveyor BC-11 now that belt conveyor BC-12 has been deleted?


2. On page 2 of Attachment G – Process Description, paragraphs 5-9 still include belt conveyor BC-12 and belt conveyor BC-13 and Open storage pile OS-7 which were relocated to the clean coal circuit. Please make corrections as necessary. In paragraph 4, please expand and describe where the refuse goes after belt conveyor BC-11. The Process Description should be an written description of the Process Flow Diagram and the history of past changes is not needed. Please just included the up to date information and proposed changes.

- 3. It appears that 360 TPH and 400,000 TPY exit crusher CR-2 onto conveyor BC-15. Therefore, the following changes need to be made:
 - On the Equipment Table and Conveying Affected Source Sheet, change the maximum capacity of BC-15 from 800,000 TPY to 400,000 TPY.
 - On Attachment N Emission Calculations, change the maximum transfer rate for transfer point TP-35 from 800,000 TPY to 400,000 TPY.
- 4. On the Equipment Table, change the references for Bin 1, Bin 2 and Bin 3 to BS-1, BS-2 and BS-3, respectively.
- 5. On Attachment N Emissions Calculations in Section 2, change the description of transfer point TP-23 from BC-11 to BC-19 to whatever is appropriate now. Change the description of transfer point TP-36 to delete the reference to SS-1. Change the description of transfer point TP-41 to delete the reference to SS-2. Transfer point TP-53 from BC-13 to OS-3 lists a control device of SW-WS (water sprays), but a control efficiency of zero. It appears that the control device should be changed to N (none).
- 6. On Attachment N Emissions Calculations in Section 3, change the stockpile base area for OS-3 from 62,500 ft2 to 46,875 ft2.

Please address the above deficiencies in writing within fifteen (15) days of the receipt of this email. Application review will not commence until the application has been deemed to be technically complete. Failure to respond to this request in a timely manner may result in the denial of the application.

Should you have any questions, please contact Dan Roberts at (304) 926-0499 ext. 1210 or reply to this email.

^{***}Email Disclaimer: The information contained in this e-mail, and in any accompanying documents, may constitute confidential and/or legally privileged information. The information is intended only for use by the designated recipient. If you are not the intended recipient (or responsible for delivery of the message to the intended recipient), you are hereby notified that any dissemination, distribution, copying, or other use of, or taking of any action in reliance on this e-mail is strictly prohibited. If you have received this e-mail communication in error, please notify the sender immediately and delete the message from your system.

Deep Mine Raw Coal Circuit

- Raw coal exits the mine by a 54" belt conveyor (BC-1) which is protected by a partial enclosure (TC-PE1).
- Belt Conveyor 1 goes through transfer point (TP-1) to Double Roll Crusher (CR-1)
- From (CR-1) coal will go through transfer point 2 (TP-2) to Double Deck Screen (S-1), full enclosure (CS-EE1) protects structures from TP-1 to S-1.
- From S-1 the coal processes through transfer point 3 (TP-3) also protected by CS-FE1 to 54" belt conveyor 2 (BC-2) protected by partial enclosure 2 (TC-PE2).
- The raw coal than passes through transfer point 4 (TP-4) protected by full enclosure 2 (CS-FE2) to double deck screen 2 (S-2) onto double deck screen 3 (S-3) through transfer point 4A (TP-4A).
- Sized coal leaving double deck screen 3 passes through transfer point 5 (TP-5) also protected by full enclosure 2 (CS-FE2) to 48" belt conveyor 3 (BC-3) protected by partial enclosure (TC-PE3).
- The sized coal will then pass through transfer point 6 (TP-6) to stacking tube 1 (ST-1) and stockpile (OS-1) protected by (SL-FE35) and (WS-SW1).
- The sized coal will enter an underground feeder via dozer through transfer point 7 (TP-7) which is protected by (LO-UC1).
- The sized coal will exit the underground feeder through transfer point 8 (TP-8) protected by full enclosure 4 (TC-FE4) to 30" belt conveyor 4 (BC-4) protected by partial enclosure 4 (TC-PE4).
- Sized coal will exit belt conveyor 4 through transfer point 9 (TP-9) inside the preparation plant, protected by full enclosure 5 (TC-FE5).

Trucked Raw Coal Circuit

- Raw coal will be trucked to a truck dump and unloaded onto stockpile (OS-4) at transfer point 32 (TP-32).
- At transfer point 33 (TP-33) raw coal will be transferred from (OS-4) by an endloader. The endloader will take the raw coal to crusher (CR-2) which is protected by (CS-PE34) at transfer point 34 (TP-34) which is also protected by water (SW-WS9).
- From crusher (CR-2) refuse which is greater than 2 inches will enter onto belt conveyor 15 (BC-15) which is protected by partial enclosure (TC-PE20) at transfer point 35 (TP-35).
- From belt conveyor 15 (BC-15) refuse will enter onto stockpile (OS-5) at transfer point 36 (TP-36).
- An endloader will remove the refuse from stockpile (OS-5) at transfer point 37 (TP-37). The loader will then place the refuse in a truck at transfer point 38 (TP-38). The truck will then haul the material to the refuse pile and unload onto the refuse pile at transfer point 39 (TP-39).
- At transfer point 40 (TP-40), protected by partial enclosure (TC-PE21) sized coal will exit crusher (CR-2) and enter onto belt conveyer (BC-16).
- Belt conveyor (BC-16) will transfer sized coal onto stockpile (OS-6) at transfer point 41 (TP-41). The sized coal will be transferred from stockpile (OS-6) to stockpile (OS-1) by dozer at transfer point 42 (TP-42).
- At stockpile (OS-1) the coal will enter the underground feeder and proceed through the preparation plant as discussed earlier in the process description. Once the clean coal exits the preparation plant onto belt conveyor (BC-5) to belt conveyor (BC-19).

Clean Coal Circuit

- Coal will exit the preparation plant at transfer point 10 (TP-10) (TC-FE5) and enter on 36" belt conveyor 5 (BC-5) which is protected by partial enclosure 5 (TC-PE5).
- Belt conveyor 5 (BC-5) will transfer to 36" belt conveyor 6 (BC-6) protected by partial enclosure 6 (TC-PE6) or belt conveyor 19 (BC-19) through transfer point 11 (TP-11) protected by full enclosure 6 (TC-FE6).
- The coal will then pass through transfer point 49 (TP-49).
- A plow (flop gate) will be installed in BC-6 at transfer point 49 (TP-49) which will be protected by a partial enclosure 49 (TC-PE49).
- The coal will then pass through transfer point 12 (TP-12) to stacking tub (ST-2) and stockpile (OS-2) protected by (SL-FE36).
- The coal will enter an underground feeder via dozer, (LO-UC2), transfer point 13 (TP-13), protected by (LO-UC2).
- The coal will exit the underground feeder through transfer point 14 (TP-14) protected by full enclosure 8 (TC-FE8) to 60" belt conveyor 7 (BC-7) protected by partial enclosure 7 (TC-PE7).
- Coal will exit belt conveyor 7 through transfer point 15 (TP-15) to Bin 1 (BS-1) protected by full enclosure 9 (SL-FE9).
- The coal will exit BS-1 to the railroad cars through transfer point 16 (TP-16) protected by (LR-PE16).
- Belt conveyor (BC-6) will transfer coal to Belt conveyor (BC-13) to new stacking tube (ST-3) which will transfer clean coal at transfer point 53 (TP-53) to stockpile (OS-3).
- The coal will enter an underground feeder via dozer, (LO-UC4) transfer point 26 (TP-26), protected by (LO-UC4).
- The plow (flop gate) to be installed in BC-6 at transfer point 49 (TP-49) will be protected by partial enclosure 49 (TC-PE49). The plow at TP-49 will divert the material into a chute off the side of BC-6 at TP-49, then depending on which way the flop gate is positioned at TP-49 will determine whether the material goes to BC-13 and the new stacking tube (ST-3) or to BC-21 (the new radial stacker) to OS-8.
- Belt conveyor (BC-21) which is a radial stacker will transfer coal to stockpile (OS-8) at transfer point 50 (TP-50).
- From stockpile OS-8, clean coal will be removed by a loader at transfer point 52 (TP-52), the loader will load trucks at transfer point 51 (TP-51).
- The middlings will exit the plant on belt conveyor 19 (BC-19) and will transfer middlings to belt conveyor (BC-17) at transfer point 43 (TP-43) which is protected by partial enclosure (TC-PE22).
- At transfer point 44 (TP-44) coals will transfer to belt conveyor (BC-18) which is protected by partial enclosure (TC-PE23).
- Belt conveyor (BC-18) will transfer the middlings to Radial Stacker at transfer point (TP-48 which is protected by partial enclosure (TC-PE48).
- Radial Stacker (BC-20) will transfer middlings to stockpile (OS-7) at transfer point 45 (TP-45).
- From stockpile (OS-7) coal will be pushed to an underground feeder by dozer at transfer point 46 (TP-46) which is protected by (LO-UC3).

BC-K

Clean Coal Circuit cont.

- Coal will flow through the underground tunnel until it enters onto belt conveyor (BC-7) which is protected by partial enclosure (TC-PE7) at transfer point (TP-14) which is protected by full enclosure (TC-FE8).
- Belt conveyor (BC-7) will transfer coal into Bin 1 (BS-1) at transfer point (TP-15) which is protected by full enclosure (SL-FE9).
- From (BS-1) all coal will enter onto the rail at transfer point (TP-16) which is protected by (LR-TC1).

Refuse Circuit

- At full enclosure 2 (FE-2) refuse will exit double screen (S-3) through transfer point 19 (TP-19) protected by (CS-FE2) to 42" belt conveyor 9 (BC-9) protected by partial enclosure 10 (TC-PE10).
- From belt conveyor 9 refuse will enter onto 36" belt conveyor 8 (BC-8) protected by partial enclosure 9 (TC-PE9) through transfer point (TP-20) protected by partial enclosure 11 (TC-PE11).
- Also entering onto belt conveyor 8 (BC-8) is refuse, exiting the preparation plant at transfer point 17 (TP-17) protected by full enclosure 5 (TC-FE5).
- All refuse will enter Bin 2 (BS-2), protected by full enclosure 10 (SW-FE10) from belt conveyor 8 through transfer point 18 (TP-18) also protected by full enclosure 10 (SW-FE10).
- From (BS-2) refuse will exit by two different transfer points; the main process will have the refuse exiting BS-2 pass through transfer point 28 (TP-28) protected by full enclosure 10 (SW-FE10) to 36" belt conveyor 14 (BC-14) protected by partial enclosure 19 (TC-PE19).
- From belt conveyor 14 (BC-14) refuse will enter Bin 3 (BS-3) through transfer point 29 (TP-29) protected by full enclosure (SL-FE11).
- Refuse will discharge from BS-3 to a pan by transfer point 30 (TP-30) protected by (LR-PE30). The pan will then spread the refuse to the refuse pile through transfer point 31 (TP-31).
- The secondary process proposed the refuse exiting BS-2 onto belt conveyor 10 at transfer point 22 (TP-22) protected by partial enclosure 13 (TC-PE13) and enter onto 24" belt conveyor 11 (BC-11) protected by partial enclosure 13 (TC-PE13).
- Refuse will then pass through transfer point 23 (TP-23) protected by partial enclosure 14 (TC-PE14) to 24" belt conveyor 12 (BC-12) protected by partial enclosure 15 (TC-PE15).
- Belt conveyor 12 will exit refuse through transfer point 24 (TP-24) protected by partial enclosure 16 (TC-PE16) onto 24" belt conveyor 13 (BC-13) protected by partial enclosure (TC-PE17) attached to a radial stacker protected by (SI-CS1).
- Refuse will then enter onto stockpile (OS-3) through transfer point 25 (TP-25).
- From stockpile OS-3, refuse will be removed by a loader at transfer point 26 (TP-26), the loader will load trucks at transfer point 27 (TP-27).
- The trucks will leave the site via unpaved and paved access roads protected by water (HR-WS8).
- The secondary process identified above is being revised in this modification. It should be noted that BC-10 and BC-11 are Idle. It should also be noted that BC-12 has been removed and the remaining from TP-23 to end of circuit is either being removed or relocated to the clean coal circuit.

Stockpile bases for previously approved stockpile area will be enlarged to 37,500 square feet or 50,000 tons maximum. Two stockpiles, OS-3 and OS-8, will be enlarged to a base of 46,875 square feet or 62,500 tons maximum.

Roberts, Daniel P

Company He F Run Mining Company
Face is Sentinel Prep Plant 6

From:

Nair, Greg < GNair@archcoal.com>

Sent:

Thursday, December 8, 2016 10:05 AM

To:

Roberts, Daniel P

Subject:

RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel

Preparation Plant

Dan,

Yes that would be fine. Give me a call when you ready. I am in the office all morning.

Greg Nair

Arch Coal, Inc.

Manager Surface Mine Planning

Northern Appalachia Operations
100 Tygart Drive

Grafton, WV 26354

Office Direct: (304) 265-9778 Mobile: (304) 290-3202 Email: gnair@archcoal.com

From: Roberts, Daniel P [mailto:Daniel.P.Roberts@wv.gov]

Sent: Thursday, December 08, 2016 9:58 AM

To: Nair, Greg

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Greg,

Hey. I am in the office today and should be near my desk most of the day. If it is alright with you, can I get familiar with the letter and its contents again and just call you in about 15 minutes or so? Or give me a time to call later in the day...

Dan

From: Nair, Greg [mailto:GNair@archcoal.com]
Sent: Wednesday, December 7, 2016 2:00 PM
To: Roberts, Daniel P < Daniel.P.Roberts@wv.gov>

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Dan,

I have a question or two on the comments. When would be a good time for me to call and discuss with you?

Greg Nair
Arch Coal, Inc.

Roberts, Daniel P

From:

Roberts, Daniel P

Sent:

Friday, November 18, 2016 3:10 PM

To:

Nair, Greg (GNair@archcoal.com)

Cc:

McKeone, Beverly D

Subject:

WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel

Preparation Plant

RE:

Application Status: Incomplete Wolf Run Mining Company Sentinel Preparation Plant

Permit Application No. R13-0119D

Plant ID No. 001-00005

Mr. Nair:

Your application for a modification permit for a wet wash coal preparation plant was received by this Division on August 17, 2016 and assigned to the writer for review. The applicant place a Class I legal advertisement in The Barbour Democrat on August 17, 2016. The DAQ received an original affidavit of publication on September 1, 2016. In an email dated October 21, 2016, the DAQ deemed the application to be incomplete. On November 1, 2016, the DAQ received a response with corrected application pages. Upon further review of said application and additional information received, it has been determined that the application as submitted is still incomplete based on the following items:

1. On Attachment F – Process Flow Diagram, the diagram pictures refuse conveyor BC-11 transferring refuse onto clean coal conveyor BC-19. BC-19 is supposed to be fed clean coal from conveyor BC-6. Please make corrections as necessary.

Also, where does the refuse go after belt conveyor BC-11 now that belt conveyor BC-12 has been deleted?

- 2. On page 2 of Attachment G Process Description, paragraphs 5-9 still include belt conveyor BC-12 and belt conveyor BC-13 and Open storage pile OS-7 which were relocated to the clean coal circuit. Please make corrections as necessary. In paragraph 4, please expand and describe where the refuse goes after belt conveyor BC-11. The Process Description should be an written description of the Process Flow Diagram and the history of past changes is not needed. Please just included the up to date information and proposed changes.
- 3. It appears that 360 TPH and 400,000 TPY exit crusher CR-2 onto conveyor BC-15. Therefore, the following changes need to be made:
 - On the Equipment Table and Conveying Affected Source Sheet, change the maximum capacity of BC-15 from 800,000 TPY to 400,000 TPY.
 - On Attachment N Emission Calculations, change the maximum transfer rate for transfer point TP-35 from 800,000 TPY to 400,000 TPY.
- 4. On the Equipment Table, change the references for Bin 1, Bin 2 and Bin 3 to BS-1, BS-2 and BS-3, respectively.

- 5. On Attachment N Emissions Calculations in Section 2, change the description of transfer point TP-23 from BC-11 to BC-19 to whatever is appropriate now. Change the description of transfer point TP-36 to delete the reference to SS-1. Change the description of transfer point TP-41 to delete the reference to SS-2. Transfer point TP-53 from BC-13 to OS-3 lists a control device of SW-WS (water sprays), but a control efficiency of zero. It appears that the control device should be changed to N (none).
- 6. On Attachment N Emissions Calculations in Section 3, change the stockpile base area for OS-3 from 62,500 ft2 to 46,875 ft2.

Please address the above deficiencies in writing within fifteen (15) days of the receipt of this email. Application review will not commence until the application has been deemed to be technically complete. Failure to respond to this request in a timely manner may result in the denial of the application.

Should you have any questions, please contact Dan Roberts at (304) 926-0499 ext. 1210 or reply to this email.

Roberts, Daniel P

Common WolfRun Mining Company
The Sentine Prep Plant 6

From: Sent: Nair, Greg <GNair@archcoal.com> Tuesday, November 15, 2016 2:35 PM

To:

Roberts, Daniel P

Subject:

RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel

Preparation Plant

Dan,

Just following up to your email from last week. I failed (forgot) to realize how many days off the state has to various holidays, etc.

I certainly appreciate anything you can do to review resubmitted application.

Thanks.

Greg Nair
Arch Coal, Inc.
Manager Surface Mine Planning
Northern Appalachia Operations
100 Tygart Drive
Grafton, WV 26354

Office Direct: (304) 265-9778 Mobile: (304) 290-3202 Email: gnair@archcoal.com

From: Roberts, Daniel P [mailto:Daniel.P.Roberts@wv.gov]

Sent: Thursday, November 10, 2016 4:23 PM

To: Nair, Greg

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Greg,

Hey. Sorry, Tuesday was a state holiday and so is tomorrow (Friday). I am taking the corrections you submitted home with me this weekend to look through them and I will get back to you early next week.

Dan

From: Nair, Greg [mailto:GNair@archcoal.com]
Sent: Tuesday, November 8, 2016 11:29 AM
To: Roberts, Daniel P < Daniel.P.Roberts@wv.gov>
Cc: Freeman, Thomas < TFreeman@archcoal.com>

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Roberts, Daniel P

From:

Roberts, Daniel P

Sent:

Thursday, November 10, 2016 4:23 PM

To:

'Nair, Greg'

Subject:

RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel

Preparation Plant

I.D. No. 001-00005 Rea RI3-01191 Company Kolf Run Mining Company

Facily Sentinel Prop Plant

Greg,

Hey. Sorry, Tuesday was a state holiday and so is tomorrow (Friday). I am taking the corrections you submitted home with me this weekend to look through them and I will get back to you early next week.

Dan

From: Nair, Greg [mailto:GNair@archcoal.com]

Sent: Tuesday, November 8, 2016 11:29 AM

To: Roberts, Daniel P < Daniel.P.Roberts@wv.gov> Cc: Freeman, Thomas <TFreeman@archcoal.com>

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Good Morning Dan.

Just wanted to drop an email and see how the application review of the information that I resubmitted is coming along.

Any update would be great.

Thanks.

Greg Nair

Arch Coal, Inc.

Manager Surface Mine Planning

Northern Appalachia Operations

100 Tygart Drive Grafton, WV 26354

Office Direct: (304) 265-9778 Mobile: (304) 290-3202 Email: gnair@archcoal.com

From: Roberts, Daniel P [mailto:Daniel.P.Roberts@wv.gov]

Sent: Wednesday, October 26, 2016 3:54 PM

To: Nair, Greq

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Greg,

Greg Nair

Manager Surface Mine Planning (304)265-9778 Direct (304)290-3202 Mobile

I.D. No. 001-00005 Reg. RIS-01190

gnair@archcoal.com

October 31, 2016

Mr. Daniel Roberts WV Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia 25304

Re:

Wolf Run Mining Company Sentinel Preparation Plant Permit Application R13-0119D Plant ID No. 001-00005

Dear Mr. Roberts:

Wolf Run Mining Company's application for a modification permit for a wet wash coal preparation plant was received by your Division on August 17, 2016 and assigned to you for review. Wolf Run Mining Company placed a Class I legal advertisement in The Barbour Democrat on August 17, 2016. The DAQ received original affidavit of publication on September 1, 2016. Upon initial review of said application and additional information forwarded to you, it has been determined that the application as submitted is incomplete based. This letter shall address those items that were deemed incomplete. Therefore, I offer the following comments based on your review:

1. Belt conveyor BC-13 and open storage pile OS-3 were previously permitted as part of the refuse circuit. This application now includes them as part of the clean coal circuit. Were they previously constructed and now relocated or were they never constructed?

<u>Wolf Run Response -</u> You are correct in that BC-13 and OS-3 were previously permitted as part of the refuse circuit. This application now includes them as part of the clean coal circuit. Yes this structure was constructed and is now being relocated in this application.

<u>DAQ Comment - The Equipment Table lists BC-13</u> as a refuse conveyor with maximum capacities of 360 TPH and 800,000 TPY. The Conveying Affected Source Sheet lists BC-13 as a refuse conveyor with maximum capacities of 244 TPH and 800,000 TPY. The emissions calculations spreadsheet still includes BC-13 as part of the refuse circuit and lists transfer point TP-24 as BC-12 to BC-13 with maximum transfer rates of 244 TPH and 300,000 TPY.

Arch Coal, Inc. Eastern Operations 100 Tygart Drive, Grafton, West Virginia 26354 www.archcoal.com

Entire Document
NON-CONFIDENTIAL

Mr. Dan Roberts October 31, 2016 Page Two Greg Nair
Manager Surfac

Manager Surface Mine Planning (304)265-9778 Direct (304)290-3202 Mobile

gnair@archcoal.com

There is no exit transfer point listed from BC-13 to another piece of equipment or open storage pile. New transfer point TP-49 from BC-6 to Plow to either BC-13/BC-21 includes BC-13 in the clean coal circuit, but once again there is no exit transfer point from BC-13. Please make corrections as necessary to provide consistent information throughout the application.

POXPED

<u>Wolf Run Response</u> – The Equipment Table has been revised to list BC-13 as a Clean Coal conveyor with maximum capacities of 360 TPH and 800,000 TPY. The Conveying Affected Source Sheet has been revised to list BC-13 as a clean coal conveyor with maximum capacities of 360 TPH and 800,000 TPY. The emissions calculations spreadsheet has been revised to include BC-13 as part of the clean coal circuit and lists transfer point TP-53 with maximum transfer rates of 360 TPH and 800,000 TPY. It should be noted that BC-12 is removed.

2. On Attachment F – Process Flow Diagram, the drawing does not include or label belt conveyors BC-3 and BC-19. The drawing depicts belt conveyors BC-17 and BC-18 as part of the refuse circuit being fed by belt conveyor BC-12 and transferring refuse to open storage pile OS-7, but they are listed and described throughout the rest of the application as clean coal conveyors. The Process Flow Diagram also does not include various transfer points, such as TP-6 from BC-3 to OS-1, TP-45 from BC-20 to OS-7. There is no transfer point from BC-13 to OS-3. Most transfer points list their control device, but some do not. Transfer point TP-23 is listed twice... once before belt conveyor BC-12 and once after it. Please make corrections as necessary.

por shows

<u>Wolf Run Response</u> — The drawing now includes and lists belt conveyors BC-3 and BC-19. The drawing has been revised to depict belt conveyors BC-17 and BC-18 as part of the clean coal circuit being fed by belt conveyor BC-19 and ultimately transferring clean coal (sized) to open storage pile OS-7. Please note that belt conveyor BC-12 has been removed. The Process Flow Diagram has been revised to include the various transfer points, such as TP-6 from BC-3 to OS-1, TP-45 from BC-20 to OS-7 that were previously omitted. The transfer point from BC-13 to OS-3 has been added. I believe we have corrected the transfer points that did not list their control device. Transfer point TP-23 that was listed twice has been corrected.

Mr. Dan Roberts October 31, 2016 Page Three **Greg Nair**Manager Surface Mine Planning (304)265-9778 Direct

(304)290-3202 Mobile gnair@archcoal.com

<u>DAQ Comment - The drawing depicts new radial stacker BC-20 as part of the refuse circuit and deposits material onto open storage pile OS-7.</u> From open storage pile OS-7, where does the refuse go after it enters the underground feeder at transfer point TP-46? The rest of the application references BC-20 and OS-7 as handling clean coal.

<u>Wolf Run Response</u> – The drawing actually reflects new radial stacker BC-20 as part of the clean coal circuit and deposits material onto open storage pile OS-7. From storage pile OS-7, the clean coal will enter the underground feeder at transfer point TP-46 and ultimately will end up at BS-1. Please note that this is now part of the clean coal process.

3. On the Equipment Table and the Conveying Affected Source Sheet, belt conveyor BC-1 lists its maximum capacities as 2,500 TPH and 4,400,000 TPY, which was an increase from the previously permitted values of 1,350 TPH and 3,600,000 TPY. However, this appears to be a typo because the crusher that is fed by BC-1 is rated for 1,350 TPH and 3,600,000 TPY as well as everything downstream from there. Please make corrections if necessary.

<u>Wolf Run Response</u> On the Equipment Table and the Conveying Affected Source Sheet, belt conveyor BC-1 has been revised to list its maximum capacities as 1,350 TPH and 3,600,000 TPY.

<u>DAQ Comment -</u> Belt conveyor BC-15 is listed with a maximum annual capacity of 800,000 TPY on both forms. However, in the Emissions Calculations Spreadsheet Section 1, transfer points TP-35 from CR-2 to BC-15 from BC-15 to OS-5 list the maximum annual transfer rate as 400,000 TPY, which matches the maximum annual throughput for OS-5. Please make corrections as necessary.

<u>Wolf Run Response</u> – Belt conveyor BC-15 is listed with a maximum annual capacity of 800,000 TPY on both forms. The Emissions Calculations Spreadsheet Section 1, transfer points TP-35 from CR-2 to BC-15 has been revised to list the maximum annual transfer rate of 800,000. BC-15 to OS-5 is listed correctly with the maximum annual transfer rate as 400,000 TPY. This matches the previously approved permit as nothing is being revised at this location.

Sill erect

Mr. Dan Roberts October 31, 2016 Page Four Greg Nair Manager Surface Mine Planning (304)265-9778 Direct (304)290-3202 Mobile

gnair@archcoal.com

<u>DAQ Comment</u> - Crusher CR-1 is listed with maximum capacities of 1,350 TPH and 3,600,000 TPY on both forms and in the Emissions Calculations Spreadsheet under the transfer points section. However, in the Emissions Calculations Spreadsheet, the inputs list 1,350 TPH and 1,849,303 TPY. Please make corrections as necessary.

J

<u>Wolf Run Response</u> – The Emissions Calculations Spreadsheet for Crusher CR-1 has been revised to list the correct inputs list 1,350 TPH and 3,600,000 TPY.

<u>DAQ Comment -</u> Crusher CR-2 is listed with maximum capacities of 600 TPH and 3,600,000 TPY on both forms. However, in the Emissions Calculations Spreadsheet, the inputs list zero TPH and zero TPY. Also, the maximum capacities for transfer points TP-34 from Loader to CR-2 is listed as 360 TPH and 800,000 TPY, TP-35 from CR-2 to BC-15 is listed as 360 TPH and 400,000 TPY and TP-40 from CR-2 to BC-16 is listed as 360 TPH and 800,000 TPY. Please make corrections as necessary.

<u>Wolf Run Response</u> – The Emissions Calculations Spreadsheet for Crusher CR-2 has been revised to list the correct inputs list 600 TPH and 3,600,000 TPY. The maximum capacities for transfer points TP-34 from Loader to CR-2 is listed as 360 TPH and 800,000 TPY, TP-35 from CR-2 to BC-15 is listed as 360 TPH and 400,000 TPY and TP-40 from CR-2 to BC-16 is listed as 360 TPH and 800,000 TPY are correctly shown.

<u>DAQ Comment -</u> In the Equipment Table, Open stockpile OS-3 is listed as a refuse stockpile with a maximum base area of 46,875 ft2 and capacity of 300,000 tons. However, the Storage Activity Affected Source Sheet lists open stockpile OS-3 as a clean coal stockpile with a maximum base area of 62,500 ft2 and capacity of 800,000 tons. Open stockpile OS-7 is listed as a sized coal stockpile. However, the Storage Activity Affected Source Sheet lists open stockpile OS-7 as a clean coal stockpile. Please make corrections as necessary.

<u>Wolf Run Response</u> – Open Stockpile has been revised to list as a clean coal stockpile on the Equipment Table with a maximum base are of 62,500 ft2 and capacity of 800,000 tons. Open stockpile OS-7 is a sized coal (clean) stockpile. The Storage Activity Affected Source Sheet has been revised.

change cale mouts

Mr. Dan Roberts October 31, 2016 Page Five

Greg Nair

Manager Surface Mine Planning (304)265-9778 Direct (304)290-3202 Mobile

gnair@archcoal.com

On the Equipment Table and in the Conveying Affected Source Sheet, clean coal belt 4. conveyors BC-5 and BC-6 are listed with a maximum hourly capacity of 800 TPH each. However, in the emission calculations spreadsheet, transfer points TP-10 from the Prep Plant to BC-5 and TP-11 from BC-6 to OS-2 are listed as 600 TPH. Make corrections as necessary.

Wolf Run Response - The Equipment Table and the Conveying Affected Source Sheet, clean coal belt conveyors BC-5 and BC-6 are listed with a maximum hourly capacity of 800 TPH each. This is correct and matches the previously approved permit. The emission calculations spreadsheet, transfer points TP-10 from the Prep Plant to BC-5 and TP-11 from BC-6 to OS-2 which was listed as 600 TPH has been revised to 800 TPH.

On the Storage Activity Affected Source Sheet, please change the Source Identification 5. Number for Bin 1, Bin 2 and Bin 3 to BS-1, BS-2 and BS-3, respectively, to match information in the rest of the application.

change

Wolf Run Response - The Storage Activity Affected Source Sheet has been revised to change the Source Identification Number for Bin 1, Bin 2 and Bin 3 to BS-1, BS-2 and BS-3. This now matches information in the rest of the application.

In the Emissions Calculations Spreadsheet Section 1, transfer points TP-21 from BS-2 to 6. BC-10, TP-22 from BC-10 to BC-11 and TP-23 from BC-12 to BC-13 all list zero for their maximum hourly transfer rate. Also, BC-13 is now part of the clean coal circuit.

Wolf Run Response - In the Emissions Calculations Spreadsheet Section 1, transfer points TP-21 from BS-2 to BC-10, TP-22 from BC-10 to BC-11 and TP-23 from BC-12 to BC-13 have been revised to remove the listing of zero for their maximum hourly transfer rate to the approved permit rate of 244. Also, BC-13 which is now part of the clean coal circuit has been revised.

In Section 3 Unpaved Haulroads, Item 8 has a zero entered for number of wheels, mean 7. vehicle weight, mean vehicle speed and miles per trip. Please explain. Make corrections as necessary.

Mr. Dan Roberts October 31, 2016 Page Six **Greg Nair**Manager Surface Mine Planning
(304)265-9778 Direct
(304)290-3202 Mobile

gnair@archcoal.com

<u>Wolf Run Response</u> – In Section 3 Unpaved Haulroads, Item 8 was listed as zero for number of wheels, mean vehicle weight, mean vehicle speed and miles per trip. This has been corrected.

I have addressed the deficiencies in writing within the fifteen (15) days of the receipt of the email. I am submitting a copy of the comments electronically via email and am mailing the required one copy.

If you have any additional comments or need any additional information please do not hesitate to contact me.

Sincerely,

Greg Nair

Manager Surface Mine Planning

REVISIONS PROPOSED UNDER R13-119D – AUGUST 2016 MODIFICATION

- The middlings will exit (BC-19) to belt conveyor (BC-17) at transfer point 43 (TP-43) which is protected by partial enclosure (TC-PE22).
- At transfer point 44 (TP-44) coals will transfer to belt conveyor (BC-18) which is protected by partial enclosure (TC-PE23).
- Belt conveyor (BC-18) will transfer the middlings to Radial Stacker at transfer point (TP-48 which is protected by partial enclosure) TC-PE48).
- Radial Stacker (BC-20) will transfer middlings to stockpile (OS-7) at transfer point 45 (TP-45).
- From stockpile (OS-7) coal will be pushed to an underground feeder by dozer at transfer point 46 (TP-46) which is protected by (LO-UC3).
- A plow (flop gate) will be installed in BC-6 at transfer point 49 (TP-49) which will be protected by a partial enclosure 49 (TC-PE49).
- Belt conveyor (BC-6) will transfer coal to Belt conveyor (BC-13) to new stacking tube (ST-3) which will transfer clean coal at transfer point 53 (TP-53) to stockpile (OS-3).
- The coal will enter an underground feeder via dozer, (LO-UC4) transfer point 26 (TP-26), protected by (LO-UC4).
- The plow (flop gate) to be installed in BC-6 at transfer point 49 (TP-49) will be protected by partial enclosure 49 (TC-PE49). The plow at TP-49 will divert the material into a chute off the side of BC-6 at TP-49, then depending on which way the flop gate is positioned at TP-49 will determine whether the material goes to BC-13 and the new stacking tube (ST-3) or to BC-21 (the new radial stacker) to OS-8.
- Belt conveyor (BC-21) which is a radial stacker will transfer coal to stockpile (OS-8) at transfer point 50 (TP-50).
- From stockpile OS-8, clean coal will be removed by a loader at transfer point 52 (TP-52), the loader will load trucks at transfer point 51 (TP-51).
- Stockpile bases for previously approved stockpile area will be enlarged to 37,500 square feet or 50,000 tons maximum. Two stockpiles, OS-3 and OS-8, will be enlarged to a base of 46,875 square feet or 62,500 tons maximum.

EQUIPMENT TABLE

Equipment ID No.	Description	Year	Maximu	m Capacity	Control
		Installed	ТРН	TPY	Equipment
CR-1	Double Roll Crusher	1991*	1350	3,600,000	FE-1
CR-2	Double Roll Crusher	2011	600	3,600,000	CS-PE34
S-1	Double Deck Screen	1991*	1350	3,600,000	FE-1
S-2	Double Deck Vibrating Screen	1991*	1350	3,600,000	FE-2
S-3	Double Deck Vibrating Screen	1991*	1350	3,600,000	FE-2
Belts					
BC-1	Belt Conveyor - Raw Coal	1991*	1350	3,600,000	PE-1
BC-2	Belt Conveyor - Raw Coal	1991*	1350	3,600,000	PE-2
BC-3	Belt Conveyor - Raw Coal	1991*	1350	3,600,000	PE-3
BC-4	Belt Conveyor - Raw Coal	1991*	600	4,400,000	PE-4
BC-5	Belt Conveyor - Clean Coal	1991*	800	4,400,000	PE-5
BC-6	Belt Conveyor - Clean Coal	1991*	800	3,600,000	PE-6
BC-7	Belt Conveyor - Clean Coal	1991*	2500	4,400,000	PE-7
BC-8	Belt Conveyor - Refuse	1991*	400	2,280,000	PE-9
BC-9	Belt Conveyor - Refuse	2008	244	300,000	PE-10
BC-10	Belt Conveyor - Refuse	2008	244	300,000	PE-12
BC-11	Belt Conveyor - Refuse	2008	244	300,000	PE-13
BC-13	Belt Conveyor – Clean Coal	2016**	360	800,000	PE-17
BC-14	Belt Conveyor - Refuse	1991*	400	1,980,000	PE-19
BC-15	Belt Conveyor - Sized Coal	2011	360	800,000	PE-20
BC-16	Belt Conveyor - Sized Coal	2011	360	800,000	PE-21
BC-17	Belt Conveyor - Clean Coal	2011	360	800,000	PE-22
BC-18	Belt Conveyor - Clean Coal	2011	360	800,000	PE-23
BC-19	Belt Conveyor - Clean Coal	2011	360	800,000	PE-24
BC-20	Belt Conveyor - Clean Coal	2016**	360	800,000	PE-48
BC-21	Belt Conveyor - Clean Coal	2016**	360	800,000	PE-50

REVISED: 10/31/2016

EQUIPMENT TABLE

Storage	Description	Max. Base Area (sq. ft.)	Max. Storage Capacity (tons)	Max. Capacity TPY	Control Equipment
OS-1	Sized Coal Stockpile	37,500	50,000	4,400,000	WS-1
OS-2	Clean Coal Stockpile	37,500	50,000	3,600,000	WS-2
OS-3	Clean Coal Stockpile	46,875 🗸	62,500	800,000	WS-3
Bin 1 35-	Clean Coal Bin	600	161	4,400,000	FE-9
Bin 2) (25)	Refuse Coal Bin	600	161	2,280,000	FE-10
Bin 3) 2	Refuse Coal Bin	600	161	1,980,000	FE-11
08-4	Raw Coal	37,500	50,000	800,000	WS-9
OS-5	Sized Coal Stockpile	37,500	50,000	400,000	WS-10
OS-6	Sized Coal Stockpile	37,500	50,000	800,000	WS-11
OS-7	Sized Coal Stockpile	37,500	50,000	800,000	TC-WS15
OS-8	Clean Coal Stockpile	46,875	62,500	800,000	TC-WS16

^{*} Notes when permit was acquired by current owner, not when equipment may have been initially installed.

** Notes when equipment will be installed and/or modified, if permit approved.

CONVEYING AFFECTED SOURCE SHEET

	Source	Date of Construction,	Type of	Size of	Maximum Transfe		Average Moisture	Control
	Identification Number ¹	Reconstruction, or Modification (Month/Year) ²	Material Handled ³	Material Handled ⁴	tons/hour	tons/year	Content (%) ⁶	Device ⁷
	BC-1	11/11	RC	Raw – 2" x 0	1350	3,600,000	5 %	PE-1
	BC-2	11/11	SC	Raw – 2" x 0	1350	3,600,000	5 %	PE-2
	BC-3	11/11	SC	¾' x 0	1350	3,600,000	5 %	PE-3
	BC-4	11/11	SC	¾' x 0	600	4,400,000	5 %	PE-4
	BC-5	11/11	CC	¾' x 0	800	4,400,000	5 %	PE-5
	BC-6	11/11	CC	¾' x 0	800	3,600,000	5 %	PE-6
	BC-7	11/11	CC	¾' x 0	2500	4,400,000	5 %	PE-7
	BC-8	11/11	R	+ 3/4"	400	2,280,000	5 %	PE-9
	BC-9	06/08	R	+ 3/4'	244	300,000	5 %	PE-10
<i>(</i> 0 -	BC-10	06/08	R	+ 3/4"	244	300,000	5 %	PE-12
vo RC-13	BC-11	06/08	R	+ 3/4'	244	300,000	5 %	PE-13
no BC-13 deleted	BC-13	11/11	CC 🗸	³¼' x 0	360	800,000	5 %	PE-17
gelet-co.	BC-14	11/11	R	+ 3/4'	400	1,980,000	5 %	PE-19
	BC-15	11/11	R	+ 3/4'	360	800,000 🕡	5 %	PE-20
	BC-16	11/11	SC	¾' x 0	360	800,000	5 %	PE-21
	BC-17	11/11	CC	¾' x 0	360	800,000	5 %	PE-22
	BC-18	11/11	CC	¾' x 0	360	800,000	5 %	PE-23
	BC-19	11/11	CC	³ / ₄ ' x 0	360	800,000	5 %	PE-24

1. Enter the appropriate Source Identification Number for each conveyor using the following codes. For example, multiple belt conveyors should be designated BC-1, BC-2, BC-3 etc. Transfer points are considered emission points, not sources, and should not be included in the *Conveying Affected Source Sheet*. Transfer Point Identification Numbers shall be assigned in the *Emission Calculation Sheet*.

BC Belt Conveyor

BE Bucket Elevator

DL Drag-link Conveyor

PS Pneumatic System

SC Screw Conveyor

VC Vibrating Conveyor

OT Other

Enter the date that each crusher and screen was constructed, reconstructed, or modified.

3. Enter the type of material being handled - Raw Coal (RC) Sized Coal (SC) Clean Coal (CC) Refuse (R) Other (O)

4. Enter the nominal size of the material being conveyed (e.g. clean coal - ¾" x 0). If more than one material is handled by the listed conveyor, list each material and enter the appropriate data for each material.

5. Enter the maximum material transfer rate for each conveyor in tons per hour and tons per year.

6. Enter the average percent moisture content of the conveyed material.

7. Enter the control device for the conveyor. PE - Partial Enclosure (example 3/4 hoop), FE - Full Enclosure, N - None

STORAGE ACTIVITY AFFECTED SOURCE SHEET

Source Identification Number ¹	OS-1	OS-2	OS-3	OS-4	OS-5	OS-6
Type of Material Stored ²	Sized Coal	Clean Coal	Clean Coal	Raw Coal	Sized Coal	Sized Coal
Average Moisture Content (%) ³	5 %	5 %	5 %	5 %	5 %	5 %
Maximum Yearly Storage Throughput (tons) ⁴	4,400,000	3,600,000	800,000	800,000	400,000	800,000
Maximum Storage Capacity (tons) ⁵	50,000	50,000	62,500	50,000	50,000	50,000
Maximum Base Area (ft²) ⁶	37,500	37,500	46,875	37,500	37,500	37,500
Maximum Pile Height (ft) ⁷	20	20	20	15	15	15
Method of Material Load-in ⁸	ST-1	ST-2	ST-3	TD-1	SS-1	SS-2
Load-in Control Device Identification Number ⁹	SL-FE35	SL-FE36	SL-FE37	NONE	NONE	NONE
Storage Control Device Identification Number ⁹	SW-WS1	SW-WS14	SW-WS3	SW-WS9	SW-WS10	SW-WS2
Method of Material Load-out ⁸	UC	UC	UC	ОТ	FE	ОТ
Load-out Control Device Identification Number ⁹	LO-UC1	LO-UC2	LO-UC4	NONE	NONE	NONE

1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.

BS Bin or Storage Silo (full enclosure) E3 Enclosure (three sided enclosure)
OS Open Stockpile SB Storage Building (full enclosure)
SF Stockpiles with wind fences OT Other

2. Describe the type of material stored or stockpiled. (e.g. clean coal (CC), raw coal (RC), refuse (R), sized coal (SC), other (O))

3. Enter the average percent moisture content of the stored material.

4. Enter the maximum yearly storage throughput for each storage activity.

- 5. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.)
- 6. For stockpiles, enter the maximum stockpile base area.
- 7. For stockpiles, enter the maximum stockpile height.
- 8. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:

CS	Clamsnell	22	Stationary Conveyor/Stacker
FC	Fixed Height Chute from Bins	ST	Stacking Tube
FE	Front Endloader	TC	Telescoping Chute from Bins
MC	Mobile Conveyor/Stacker	TD	Truck Dump
UC	Under-pile or Under-Bin Reclaim Conveyor	PC	Pneumatic Conveyor/Stacker
RC	Rake or Bucket Reclaim Conveyor	OT	Other

9. Enter the appropriate Control Device Identification Number for each storage activity. Refer to Table A - Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.

STORAGE ACTIVITY AFFECTED SOURCE SHEET

Source Identification Number ¹	OS-7	OS-8	BS-1	BS-2	BS-3
Type of Material Stored ²	Sized Coal	Clean Coal	Clean Coal	Refuse	Refuse
Average Moisture Content (%) ³	5 %	5 %	5 %	5 %	5 %
Maximum Yearly Storage Throughput (tons) ⁴	800,000	800,000	4,400,000	2,280,000	1,980,000
Maximum Storage Capacity (tons) ⁵	50,000	62,500	161	161	161
Maximum Base Area (ft²) ⁶	37,500	46,875	600	600	600
Maximum Pile Height (ft) ⁷	20	20	8	8	8
Method of Material Load-in ⁸	MC-2	MC-3	FC-1	UC-1	FC-2
Load-in Control Device Identification Number ⁹	NONE	NONE	SL-FE9	SL-FE10	SL-FE11
Storage Control Device Identification Number ⁹	SW-WS15	SW-WS16	SW-FE9	SW-FE10	SW-FE11
Method of Material Load-out ⁸	UC	FE	FC	UC	FC
Load-out Control Device Identification Number ⁹	LO-UC3	NONE	LR-PE16	LO-UC4	LR-PE30

1. Enter the appropriate Source Identification Number for each storage activity using the following codes. For example, if the facility utilizes three storage bins, four open stockpiles and one storage building (full enclosure), the Source Identification Numbers should be BS-1, BS-2, and BS-3; OS-1, OS-2, OS-3, and OS-4; and SB-1, respectively.

BS Bin or Storage Silo (full enclosure) E3 Enclosure (three sided enclosure)
OS Open Stockpile SB Storage Building (full enclosure)
SF Stockpiles with wind fences OT Other

- 2. Describe the type of material stored or stockpiled. (e.g. clean coal (CC), raw coal (RC), refuse (R), sized coal (SC), other (O))
- 3. Enter the average percent moisture content of the stored material.
- 4. Enter the maximum yearly storage throughput for each storage activity.
- 5. Enter the maximum storage capacity for each storage activity in tons (e.g. silo capacity, maximum stockpile size, etc.)
- 6. For stockpiles, enter the maximum stockpile base area.
- 7. For stockpiles, enter the maximum stockpile height.
- 8. Enter the method of load-in or load-out to/from stockpiles or bins using the following codes:

CS	Clamshell	SS	Stationary Conveyor/Stacker
FC	Fixed Height Chute from Bins	ST	Stacking Tube
FE	Front Endloader	TC	Telescoping Chute from Bins
MC	Mobile Conveyor/Stacker	TD	Truck Dump
UC	Under-pile or Under-Bin Reclaim Conveyor	PC	Pneumatic Conveyor/Stacker
RC	Rake or Bucket Reclaim Conveyor	OT	Other

9. Enter the appropriate Control Device Identification Number for each storage activity. Refer to Table A - Control Device Listing and Control Device Identification Number Instructions in the Reference Document for Control Device ID prefixes and numbering.

EQUIPMENT LIST FORM

Type Change,	Date of	Em	Emissions Unit (Source)	AirP	AirPollutionControlDevice		Emission Point
Modification, or Removal)	Change	D No.1	Source	No.2	Device Type	ID Na ³	Emission Type ⁴
Modification	11/01/2011	TP-38	Loader to Truck	N	None	TP-38	N/A
Modification	11/01/2011	TP-39	Truck to Refuse Pile	Z	None	TP-39	N/A
Modification	11/01/2011	TP-40	DR-2 to Belt Conveyor	TC-PE21	PE	TP-40	N/A
Modification	11/01/2011	BC-16	Belt Conveyor	TC-PE21	PE	TP-40	N/A
Modification	11/01/2011	TP-41	Belt Conveyor to OS-6	Z	None	TP-41	N/A
Modification	11/01/2011	TP-42	OS-6 to OS-1 by Dozer	Z	None	TP-42	N/A
Modification	11/01/2011	TP-43	Belt Conveyor 19 to Belt Conveyor 17	TC- PE22	PE	TP-43	N/A
Modification	11/22/2016	BC-17	Belt Conveyor	TC- PE22	PE	TP-44	N/A
Modification	11/22/2016	TP-44	Belt Conveyor 17 to Belt Conveyor 18	TC- PE23	PE	TP-44	N/A
Modification	11/22/2016	BC-18	Belt Conveyor	TC-PE23	PE	TP-48	N/A
Modification	11/22/2016	TP-45	Belt Conveyor to OS-7	Z	None	TP-45	N/A

Include all process equipment that will be part of this permit application review, including previously unpermitted emissions units (sources) and air pollution control devices.

¹Number as 1s, 2s, 3s ...or other appropriate designation. Must match process flow diagram.

² Number as 1c, 2c, 3c...or other appropriate designation. Must match process flow diagram. ³ Number as 1e, 2e, 3e...or other appropriate designation. Must match process flow diagram.

⁴ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

EQUIPMENT LIST FORM

Type Change,	Date of	En	Emissions Unit (Source)	AirP	Air Pollution Control Device		Emission Point
Modification, or Removal)	Change	$N_{0.1}$	Source	$_{No.^2}^{10}$	Device Type	ID No.3	Emission Type ⁴
Modification	06/30/2008	BC-13	Belt Conveyor	TC- PE17	PE	TP-25	N/A
Modification	11/01/2011	TP-53	BC-13 to OS-3	Z	None	TP-53	N/A
Modification	11/22/2016	TP-26	Dozer to Underground Feeder	Z	None	TP-26	N/A
Modification	11/01/2011	TP-32	Truck Dump to OS-4	Z	None	TP-32	N/A
Modification	11/01/2011	TP-33	OS-4 to Loader	Z	None	TP-33	N/A
Modification	11/01/2011	TP-34	Loader to CR-2	CS- PE34	PW	TP-34	N/A
Modification	11/01/2011	TP-35	CR-2 to Belt Conveyor	TC- PE20	PE	TP-35	N/A
Modification	11/01/2011	BC-15	Belt Conveyor	TC- PE20	PE	TP-35	N/A
Modification	11/01/2011	TP-36	Belt Conveyor to OS-5	Z	None	TP-36	N/A
Modification	11/01/2011	TP-37	OS-5 to Loader	Z	None	TP-37	N/A

Include all process equipment that will be part of this permit application review, including previously unpermitted emissions units (sources) and air pollution control devices.

¹Number as 1s, 2s, 3s ... or other appropriate designation. Must match process flow diagram.

² Number as 1c, 2c, 3c ... or other appropriate designation. Must match process flow diagram. ³ Number as 1e, 2e, 3e ... or other appropriate designation. Must match process flow diagram.

⁴ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants	Maximum Potential Uncontrolled Emissions ²	otential Emissions ²	Maximum Potential Controlled Emissions	tential issions ³	Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Used 4
Haul Road/Road Dust Emissions Paved Haul Roads	PM	0	0	0	0	田田田
Unpaved Haul Roads	ΡM	303.60	565.87	91.08	169.76	Ш
Storage Pile Emissions	PM	2.26	9.92	0.56	2.47	日日
Loading/Unloading Operations	N/A	N/A	N/A	N/A	N/A	N/A
Wastewater Treatment Evaporation & Operations	N/A	N/A	N/A	N/A	N/A	N/A
Equipment Leaks	N/A	Does not apply	N/A	Does not apply	N/A	N/A
General Clean-up VOC Emissions	N/A	N/A	N/A	N/A	N/A	N/A
Other						

List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O₂, and Noble Gases.

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute ²Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other batch).

⁽specify).

EMISSIONS SUMMARY

Name of applicant: Name of plant: Wolf Run Mining Company

Sentinel Mine

Particulate Matter or PM (for 45CSR14 Major Source Determination)

Unconf	rolled PM	Contro	lled PM
lb/hr	TPY	lb/hr	TPY
 -			

	FUGITIV	E EMISSIONS						
Stockpile Emissions	2.26	9.92	0.56	2.47				
Unpaved Haulroad Emissions 303.60 565.87 91.08 169.76								
Paved Haulroad Emissions 0.00 0.00 0.00								
Fugitive Emissions Total	305.87	575.78	91.64	172.23				

POINT SOURCE EMISSIONS						
Equipment Emissions	92.40	133.20				
Transfer Point Emissions	38.82	53.42	14.04	17.34		
Point Source Emissions Total*	482.82	665.42	106.44	150.54		
Point Source Emissions Total* *Note: Point Source Total Controlled PM TPY 6				150		

Facility Emissions Total	788.68	1,241.21	198.08	322.76
			4-12	

*Facility Potential to Emit (PTE) (Baseline Emissions) = 150.54

(Based on Point Source Total controlled PM TPY emissions from above) ENTER ON LINE 26 OF APPLICATION

Particulate Matter under 10 microns, or PM-10 (for 45CSR30 Major Source Determination)

Uncontrolled PM-10		Contro	olled PIVI-10
lb/hr	TPY	lb/hr	TPY
FUGITIV	/E EMISSIONS		

	FUGITIV	E EMISSIONS		
Stockpile Emissions	1.06	4.66	0.26	1.16
Unpaved Haulroad Emissions	89.61	167.02	26.88	50.11
Paved Haulroad Emissions	0.00	0.00	0.00	0.00
Fugitive Emissions Total	90.68	171.68	27.15	51.27

POINT SOURCE EMISSIONS						
Equipment Emissions	208.68	287.64	43.43	62.60		
Transfer Point Emissions	18.36	25.27	6.64	8.20		
Point Source Emissions Total*	227.04	312.91	50.07	70.80		

		· ·		
l I			77.00	400.00
Facility Emissions Total	247 74	484.59		122.07
Facility Emissions Total	317.71	404.33	11.44	122.01

ı	K I	DI	1.7	0
п	NI	м		9

Name of applicant: Name of plant: Page 1
Wolf Run Mining Company
Sentinel Mine

Include all information for each emission source and transfer point as listed in the permit application.

1. CRUSHING AND SCREENING (including all primary and secondary crushers and screens)

1a. PRIMARY CRUSHING

Primary Crusher ID Number	Description	Maximum Material Processing Capacity TPH TPY		Control Device ID Number	Control Efficiency %
CR-1 CR-2	Double Roll Crusher Double Roll Crusher	1,350	3,600,000	CS-PE34	80 50

1b. SECUNDARY AND TERTIARY CRUSHING

Secondary		M	Maximum Material			Control
& Lertiary	Description	l l	Processing Capacity TPH TPY		Device	Efficiency
Crusher ID	Description				וט Number	%
						

1C. SCREENING

S-2 ROM Double Deck Vibrating Screen 1,			
	350 3,600,000 350 3,600,000 350 3,600,000	CS-FE2 CS-FE2	80 80 80

2. TRANSFER POINTS (including all conveyor transfer points, equipment transfer points etc.)

			1 141	7 101 70
I	k =	Particle Size Multiplier (dimensionless)	0.74	0.35
ı	U =	Mean Wind Speed (mph)	7	

Transfer	Transfer Point Description	Material	T M	aximum	Control	Control
Point	Include ID Numbers of all conveyors,	Moisture		nsfer Rate	Device	Efficiency
ID No.	crushers, screens, stockpiles, etc. involved	Content %	TPH	TPY	ID Number	%
15 140.	ordanicia, adrecita, atoutpileo, etc. involved	COMOTA 70				
TP-1	BC-1 To CR-1	4	1,350	3,600,000	CS-FE1	80
TP-2	CR-1 To S-1	4	1,350	3,600,000	CS-FE1	80
TP-3	S-1 To BC-2	4	1,350	3,600,000	CS-FE1	80
TP-4	BC-2 To S-2	4	1,350	3,600,000	CS-FE2	80
TP-4A	S-2 To S-3	4	1,350	3,600,000	CS-FE2	80
TP-5	S-3 To BC-3	5	1,350	3,600,000	CS-FE2	80
TP-6	BC-3 To ST-1 (OS-1)	5	1,350	3,600,000	SL-FE35	80
TP-7	OS-1 To Feeder	5	600	4,400,000	LO-UC1	80
TP-8	Feeder To BC-4	5	600	4,400,000	TC-FE4	80
TP-9	BC-4 To Prep Plant	5	600	4,400,000	TC-FE5	80
TP-10	Prep Plant To BC-5	5	800	4,400,000	TC-FE5	80
TP-10	BC-5 To BC-6 or BC-19	5	800	4,400,000	TC-FE6	80
TP-12	BC-6 To ST-2 (OS-2)	5	800	3,600,000	SL-FE36	80
TP-13	OS-2 To Feeder	5	2,500	3,600,000	LO-UC2	80
TP-14	Feeder To BC-7	5	2,500	4,400,000	TC-FE8	80
TP-14 TP-15	BC-7 To BS-1	5	2,500	4,400,000	SL-FE9	80
<u> </u>	BC-7 T0 BS-1 BS-1 To Rail	5	-	4,400,000	LR-PE16	50
TP-16			2,500 400	1,980,000	TC-FE5	80
TP-17	Prep Plant To BC-8	5				
TP-18	BC-8 To BS-2	5	400	2,280,000	SL-FE10	80
TP-19	S-3 To BC-9	5	244	300,000	CS-FE2	80
TP-20	BC-9 To BC-8	5	244	300,000	TC-PE11	50
TP-21	BS-2 To BC-10	5	244	300,000	LO-UC4	80
TP-22	BC-10 To BC-11	5	244	300,000	TC-PE13	50
TP-23	BC-11 To BC-19	5	244	300,000	TC-PE14	50
TP-24	BC-6 to BC-13	5	360	800,000	TC-PE16	50
TP-26	Dozer to UG Feeder	5	360	800,000	N	0
TP-28	BS-2 To BC-14	5	400	1,980,000	LO-UC4	80
TP-29	BC-14 To BS-3	5	400	1,980,000	SL-FE11	80
TP-30	BS-3 To Pan	5	400	1,980,000	LR-PE30	50
TP-31	Pan To Refuse Pile	5	400	1,980,000	N	0
TP-32	TD-1 To OS-4	5	360	800,000	N	0
TP-33	OS-4 To Loader	5	360	800,000	N	0
TP-34	Loader To CR-2	5	360	800,000	CS-PE34	50
TP-35	CR-2 To BC-15	5	360400	800,000	TC-PE20	50
TP-36	BC-15 To SS-1 (OS-5)	5	360⊊€)(N	0
TP-37	OS-5 To Loader	5	360	400,000	N	0
TP-38	Loader To Truck	5	360	(400,000)	N	0
TP-39	Truck To Refuse Pile	5	360	400,000	N	0
TP-40	CR-2 To BC-16	5	360	800,000	TC-PE21	50
TP-41	BC-16 To SS-2 (OS-6)	5	360	800,000	N	0
TP-42	OS-6 To OS-1 by dozer	5	360	800,000	N	0
TP-43	BC-19 To BC-17	5	360	800,000	TC-PE22	50
TP-44	BC-17 To BC-18	5	360	800,000	TC-PE23	50
TP-45	BC-20 To OS-7	5	360	800,000	N	0
TP46	OS-7 To Feeder	5	360	800,000	LO-UC3	80
TP-47	BS-2 To Truck	5	150	400,000	UD-PE47	50
TP-48	BC-18 to Radial Stacker BC-20	5	360	800,000	TC-PE48	50
TP-49	BC-6 to Plow to either BC-13/BC-21	5	360	800,000	TC-PE49	50
TP-50	BC-21 to OS-8	5	360	800,000	TC-PE50	50
TP-51	OS-8 to Loader	5	360	800,000	N	0
TP-52	Loader to Truck	5	360	800,000	N	0
TP-53	BC-13 to OS-3	5	360	800,000	SW-WS3	
55	20 10 00 0		1	,		2
			 		, M	\vdash
			1			
			1	-		
	<u> </u>		-	<u> </u>		

P	ad	e	3
	ay	Ç	4

3. WIND EROSION OF STOCKPILES	(including all stockpiles of raw coal,	clean coal, coal refuse, etc.)

		, -
p =	number of days per year with precipitation >0.01 inch	146
f=	percentage of time that the unobstructed wind speed	20
	exceeds 12 mph at the mean pile height	

Source	Stockpile	Silt	Stockpile	Control	Control
ID No.	Description	Content of	base area	Device	Efficiency
		Material %	Max. sqft	ID Number	%
OS-1	Sized Coal Stockpile	5	37,500	SW-WS1	75
OS-2	Clean Coal Stockpile	5	37,500	SW-WS14	75
OS-3	Clean Coal Stockpile	5	62,500	SW-WS3	75
Bin 1	Clean Coal Bin	<u> </u>	600	SW-FE9	100
Bin 2	Refuse Coal Bin	5	600	SW-FE10	100
/Bin 3	Refuse Coal Bin	5	600	SW-FE11	100
OS-4	aw Coal From Truck Dur	5	37,500	SW-WS9	75
OS-5	Sized Coal Stockpile	5	37,500	SW-WS10	75
OS-6	Sized Coal Stockpile	5	37,500	SW-WS2	75
OS-7	Sized Coal Stockpile	5	37,500	SW-WS15	75
OS-8	Clean Coal Stockpile	5	46,875	SW-WS16	75

u6,875

4. UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

s =	silt content of road surface material (%)	10
p =	number of days per year with precipitation >0.01 inch	146
M _{dry} =	surface material moisture content (%) - dry conditions	0.2

		Number	Mean	Mean	Miles	Maximum	Maximum	Control	Control
Item	Description	of	Vehicle	Vehicle	per	Trips Per	Trips Per	Device	Efficiency
Number		wheels	Weight(tons)	Speed (mph)	Trip	Hour	Year	iD Number	%
1	Dozer For Sized Coal Transfer	2	32	3	0.04	97	#######	HR-WS4	70
2	Dozer For Clean Coal Transfer	2	32	3	0.04	97	########	HR-WS5	70
3	Loader To Truck	4	32	3	0.04	30	#######	HR-WS6	70
4	Pan To Spread Refuse	4	50	4	0.1	50	#######################################	HR-WS7	70
5	Dozer For Sized Coal Transfer	2	32	3	0.04	97	#######	HR-WS9	70
6	Loader To Truck	4	32	3	0.04	40	########	HR-WS10	70
7	Dozer For Midlings To Feeder	2	32	3	0.04	48	46,875	HR-WS11	70
8	Truck To Refuse	18	25	10	0.1	20	40,000	312 & HR	70
9									

5. INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

sL=	road surface silt loading, (g/ft^2)	70
P =	number of days per year with precipitation >0.01 inch	146

		Mean	Miles	Maximum	Maximum	Control	Control
Item	Description	Vehicle	per	Trips Per	Trips Per	Device	Efficiency
Number		Weight (tons)	Trip	Hour	Year	ID Number	%
			•				
1							
2							
3							
4							
5							
6							
7							
8							

1. Emissions From CRUSHING AND SCREENING

Page 1

1a. Primary Crushing

Primary		Р	M		PM-10					
Crusher	Uncoi	ntrolled	Cont	rolled	Uncor	trolled	Cont	rolled		
ID Number	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY		
CR-1	27.000	36.000	5.400	7.200	12.690	16.920	2.538	3.384		
CR-2	12.000	36.000	6.000	18.000	5.640	16.920	2.820	8.460		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
TOTAL	39.000	72.000	11.400	25.200	18.330	33.840	5.358	11.844		

1b. Secondary and Tertiary Crushing

Secondary		Р	М		PM-10			
& Tertiary	Uncor	ntrolled	Cont	rolled	Uncor	ntrolled	Cont	rolled
Crusher ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TOTAL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

1c. Screening

		Р	М			PM	I-10	
Screen	Uncor	ntrolled	Cont	rolled	Unco	ntrolled	Cont	rolled
ID Number	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
S-1	135.000	180.000	27.000	36.000	63.450	84.600	12.690	16.920
S-2	135.000	180.000	27.000	36.000	63.450	84.600	12.690	16.920
S-3	135.000	180.000	27.000	36.000	63.450	84.600	12.690	16.920
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TOTAL	405.000	540.000	81.000	108.000	190.350	253.800	38.070	50.760

Crushing		Р	М		PM-10			
and	Uncontrolled		Cont	rolled	Uncor	ntrolled	d Controlle	
Screening	lb/hr	lb/hr TPY lb/hr TPY		lb/hr	TPY	lb/hr	TPY	
TOTAL	444.000	612.000	92.400	133.200	208.680	287.640	43.428	62.604

EMISSION FACTORS

source: Air Pollution Engineering Manual and References (lb/ton of material throughput)

PM	
Primary Crushing	0.02
Tertiary Crushing	0.06
Screening	0.1

PM-10	
Primary Crushing	0.0094
Tertiary Crushing	0.0282
Screening	0.047

2. Emissions From TRANSFER POINTS

Transfer		PM	1			PM-	10	
Point	Uncon	trolled	Controlled		Uncont	rolled	Contro	olled
ID No.	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
	1.070	0.504	0.075	0.500	0.007	1 102	0.477	0.337
TP-1	1.876	2.501	0.375	0.500	0.887	1.183	0.177	0.237
TP-2	1.876	2.501	0.375	0.500	0.887	1.183	0.177	0.237
TP-3	1.876	2.501	0.375	0.500	0.887	1.183	0.177 0.177	0.237
TP-4	1.876	2.501	0.375	0.500	0.887	1.183	0.177	0.237
TP-4A	1.876	2.501	0.375	0.500	0.887	1.183 0.866	0.177	0.237
TP-5	1.373	1.830	0.275	0.366	0.649 0.649	0.866	0.130	0.173
TP-6	1.373	1.830	0.275	0.366	0.049	1.058	0.150	0.173
TP-7	0.610	2.237 2.237	0.122 0.122	0.447	0.289	1.058	0.058	0.212
TP-8	0.610	2.237	0.122	0.447	0.289	1.058	0.058	0.212
TP-9 TP-10	0.610	2.237	0.122	0.447	0.285	1.058	0.035	0.212
	0.813	2.237	0.163	0.447	0.385	1.058	0.077	0.212
TP-11	0.813	1.830	0.163	0.366	0.385	0.866	0.077	0.173
TP-12 TP-13	0.813 2.542	1.830	0.103	0.366	1.202	0.866	0.077	0.173
TP-13	2.542	2,237	0.508	0.300	1.202	1.058	0.240	0.212
TP-14 TP-15	2.542	2.237	0.508	0.447	1.202	1.058	0.240	0.212
TP-16	2.542	2.237	1.271	1.118	1.202	1.058	0.601	0.529
TP-17	0.407	1.007	0.081	0.201	0.192	0.476	0.038	0.095
TP-18	0.407	1.159	0.081	0.232	0.192	0.548	0.038	0.110
TP-19	0.407	0.153	0.050	0.031	0.117	0.072	0.023	0.014
TP-20	0.248	0.153	0.124	0.076	0.117	0.072	0.059	0.036
TP-21	0.248	0.153	0.050	0.031	0.117	0.072	0.023	0.014
TP-22	0.248	0.153	0.124	0.076	0.117	0.072	0.059	0.036
TP-23	0.248	0.153	0.124	0.076	0.117	0.072	0.059	0.036
TP-24	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-26	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-28	0.407	1.007	0.081	0.201	0.192	0.476	0.038	0.095
TP-29	0.407	1.007	0.081	0.201	0.192	0.476	0.038	0.095
TP-30	0.407	1.007	0.203	0.503	0.192	0.476	0.096	0.238
TP-31	0.407	1.007	0.407	1.007	0.192	0.476	0.192	0.476
TP-32	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-33	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-34	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-35	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-36	0.366	0.203	0.366	0.203	0.173	0.096	0.173	0.096
TP-37	0.366	0.203	0.366	0.203	0.173	0.096	0.173	0.096
TP-38	0.366	0.203	0.366	0.203	0.173	0.096	0.173	0.096
TP-39	0.366	0.203	0.366	0.203	0.173	0.096	0.173	0.096
TP-40	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-41	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-42	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-43	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-44	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-45	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP46	0.366	0.407	0.073	0.081	0.173	0.192	0.035	0.038
TP-47	0.153	0.203	0.076	0.102	0.072	0.096	0.036	0.048
TP-48	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-49	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-50	0.366	0.407	0.183	0.203	0.173	0.192	0.087	0.096
TP-51	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-52	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192
TP-53	0.366	0.407	0.366	0.407	0.173	0.192	0.173	0.192

2. Emissions From TRANSFER POINTS (continued)

Transfer	sfer PM PM-10			PM					
Point	Uncon	trolled	Controlled	i	Uncon	rolled	Contr	olled	
ID No.	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
Ol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
TOTALS	38.816	53.423	14.037	17.338	18.359	25.267	6.639	8.201	

Source:

AP42, Fifth Edition, Revised 11/2006

13.2.4 Aggregate Handling and Storage Piles

Emissions From Batch Drop

 $E = k*(0.0032) * [(U/5)^1.3]/[(M/2)^1.4] = pounds/ton$

Where:		PM	PM-10
k =	Particle Size Multiplier (dimensionless)	0.74	0.35
U =	Mean Wind Speed (mph)		
M =	Material Moisture Content (%)		

Assumptions:

k - Particle size multiplier

For PM (< or equal to 30um) k = 0.74For PM-10 (< or equal to 10um) k = 0.35

Emission Factor

For PM

=lb/ton

E=

\$I\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1.4))

For PM-10 =lb/ton

E=

\$J\$88*(0.0032)*((((Inputs!\$I\$72)/5)^1.3)/(((Inputs!G78+0.000000001)/2)^1.4))

For lb/hr

[lb/ton]*[ton/hr] = [lb/hr]

For Tons/year

 $[ib/ton]^*[ton/yr]^*[ton/2000lb] = [ton/yr]$

3. Emissions From WIND EROSION OF STOCKPILES

Stockpile	PM			PM-10				
ID No.	Uncon	trolled	Controlled		Uncor	Uncontrolled		olled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
								0.400
OS-1	0.253	1.106	0.063	0.277	0.119	0.520	0.030	0.130
OS-2	0.253	1.106	0.063	0.277	0.119	0.520	0.030	0.130
OS-3	0.421	1.844	0.105	0.461	0.198	0.867	0.049	0.217
Bin 1	0.004	0.018	0.000	0.000	0.002	0.008	0.000	0.000
Bin 2	0.004	0.018	0.000	0.000	0.002	0.008	0.000	0.000
Bin 3	0.004	0.018	0.000	0.000	0.002	0.008	0.000	0.000
OS-4	0.253	1.106	0.063	0.277	0.119	0.520	0.030	0.130
OS-5	0.253	1.106	0.063	0.277	0.119	0.520	0.030	0.130
OS-6	0.253	1.106	0.063	0.277	0.119	0.520	0.030	0.130
OS-7	0.253	1.106	0.063	0.277	0.119	0.520	0.030	0.130
OS-8	0.316	1.383	0.079	0.346	0.148	0.650	0.037	0.162
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TOTALS	2.264	9.917	0.563	2.466	1.064	4.661	0.265	1.159

Source:

Air Pollution Engineering Manual

Storage Pile Wind Erosion (Active Storage)

E = 1.7*[s/1.5]*[(365-p)/235]*[f/15] = (lb/day/acre)

Where:

s =	silt content of material	
p =	number of days with >0.01 inch of precipitation per year	
f =	percentage of time that the unobstructed wind speed	
	exceeds 12 mph at the mean pile height	

Emission Factors

For PM

 $E = (1.7)^*((Inputs!F147)/1.5)^*((365-Inputs!I139)/235)^*((Inputs!I140)/15)$

For PM-10

E=0.47*(1.7)*((Inputs!F147)/1.5)*((365-Inputs!I139)/235)*((Inputs!I140)/15)

For lb/hr

[lb/day/acre]*[day/24hr]*[base area of pile (acres)] = lb/hr

For Ton/yr

 $[lb/day/acre]^*[365day/yr]^*[Ton/2000lb]^*[base area of pile (acres)] = Ton/yr$

4. Emissions From UNPAVED HAULROADS

Item	PM			PM-10				
No.	Uncon	trolled	Contro	olled	Uncon	trolled	Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
								45.64
1	48.55	172.06	14.57	51.62	14.33	50.79	4.30	15.24
2	48.55	125.14	14.57	37.54	14.33	36.94	4.30	11.08
3	15.02	28.60	4.50	8.58	4.43	8.44	1.33	2.53
4	76.48	134.61	22.95	40.38	22.58	39.73	6.77	11.92
5	48.55	31.28	14.57	9.39	14.33	9.23	4.30	2.77
6	20.02	40.04	6.01	12.01	5.91	11.82	1.77	3.55
7	24.03	11.73	7.21	3.52	7.09	3.46	2.13	1.04
8	22.40	22.40	6.72	6.72	6.61	6.61	1.98	1.98
TOTALS	303.60	565.87	91.08	169.76	89.61	167.02	26.88	50.11

Source:

AP42, Fifth Edition, Revised 11/2006

13.2.2 Unpaved Roads

Emission Estimate For Unpaved Haulroads at Industrial Sites (equation 1)

 $E= k*((s/12)^a)*((W/3)^b) = lb/vmt$

Where:

		PM	PM-10
k =	particle size multiplier	4.90	1.50
a =	empirical constant	0.7	0.9
b =	empirical constant	0.45	0.45
P=	number of days per year with precipitation >0.01 inch	157	

Emission Factors

For PM E= ((\$I\$35)*(((Inputs!\$I\$163)/12)^(\$I\$36))*(((Inputs!H171)/3)^\$I\$37))*((365-\$I

For PM-10 E= ((\$J\$35)*(((Inputs!\$I\$163)/12)^(\$J\$36))*(((Inputs!H171)/3)^\$J\$37))*((365-

For lb/hr (lb/vmt)*(miles per trip)*(Max trips per hour)

For Ton/yr (lb/vmt)*(miles per trip)*(Max trips per year)*(1/2000)

5. Emissions From INDUSTRIAL PAVED HAULROADS

Item	PM				PM-	-10		
No.	Uncontr	rolled	Contr	olled	Uncont	rolled	Contr	olled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTALS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Source:

AP42, Fifth Edition, Revised 11/2006

13.2.1 PAVED ROADS

Emission Estimate For Paved Haulroads

 $E = [k * (sL/2)^0.65 * (W/3)^1.5 - C] * (1 - (P/4*N) = lb / Vehicle Mile Traveled (VMT))$

Where:

		PM	PM-10
k =	particle size multiplier	0.082	0.016
sL =	road surface silt loading, (g/ft^2)	70	
P=	number of days per year with precipitation >0.01 inch	146	
N =	number of days in averaging period	365	
C=	factor for exhaust, brake wear and tire wear	0.0047	0.0047

Emission Factors

For PM E=

(\$I\$34*(((\$I\$35)/2)^0.65)*(((Inputs!G190)/3)^1.5)-(\$I\$38))*(1-((Inputs!\$I\$18

For PM-10

E=

(\$J\$34)*(((\$I\$35)/2)^0.65)*(((Inputs!G190)/3)^1.5))-(\$I\$38))*(1-((Inputs!\$I\$

For lb/hr

(lb/vmt)*(miles per trip)*(Max trips per hour)

For Ton/yr

(lb/vmt)*(miles per trip)*(Max trips per year)*(1/2000)

PROCESS FLOW DIAGRAM

WOLF RUN MINING COMPANY SENTINEL PREPARATION PLANT

SURVEYOR AND ASSOCIATES, INC. KINGWOOD, WEST VIRGINIA **REVISED: OCTOBER 2016 (PC)** CREATED: MARCH 2014 DRAWN BY: RS PREPARED BY: PLEASANT DISTRICT SCALE: SCHEMATIC **BARBOUR COUNTY WEST VIRGINIA** MFN 00-33302

WOLF RUN MINING COMPANY

PLOT PLAN ATTACHMENT "E"

E: 1" = 80'	CREATED: MAY 2008	REVISED: OCTOBER 2016
00-33302	CREATED BY: RS	REVISED BY: PC

Prepared By: yor And Associates, Inc. gwood, West Virginia

PLEASANT DISTRICT BARBOUR COUNTY WEST VIRGINIA

From: Nair, Greg <GNair@archcoal.com>

Sent: Monday, October 31, 2016 2:42 PM

To: Roberts, Daniel P

Cc: McKeone, Beverly D; Freeman, Thomas

Subject:

RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentine

Preparation Plant

Attachments: DAQ Comments Response.pdf; PLOT PLAN OCT 2016.pdf; PROCESS FLOW OCT

2016.pdf

Dan,

Please find attached PDF copies of the revisions made based on the comments listed below. I sending via UPS next day a hard copy of the comments to your attention.

If there is any additional information required please let me know.

Thanks.

Greg Nair
Arch Coal, Inc.
Manager Surface Mine Planning
Northern Appalachia Operations
100 Tygart Drive

Grafton, WV 26354

Office Direct: (304) 265-9778 Mobile: (304) 290-3202 Email: gnair@archcoal.com

From: Roberts, Daniel P [mailto:Daniel.P.Roberts@wv.gov]

Sent: Friday, October 21, 2016 9:53 AM

To: Nair, Greg

Cc: McKeone, Beverly D

Subject: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

RE: Application Status: Incomplete

Wolf Run Mining Company Sentinel Preparation Plant

Permit Application No. R13-0119D

Plant ID No. 001-00005

Mr. Nair:

LD No 001-00005 - RIS-01190

Sentinel Prep Plant

Wolf Run Moning Company

From:

Roberts, Daniel P

Sent:

Wednesday, October 26, 2016 3:54 PM

To:

'Nair, Greg'

Subject:

RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel

Iniuals ____

Co Wolf-Run Mining Company Sentinel Prep Plant 6

Preparation Plant

Greg,

Hey. Yes, please mail them to me.

Let me know if any questions pop up. I will be out of the office tomorrow, but will be back in on Friday.

Dan

From: Nair, Greg [mailto:GNair@archcoal.com]

Sent: Wednesday, October 26, 2016 2:00 PM

To: Roberts, Daniel P < Daniel.P.Roberts@wv.gov>

Cc: McKeone, Beverly D < Beverly.D.Mckeone@wv.gov>

Subject: RE: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

Dan,

Hoping to have all comments addressed by the end of the week. Once I have them addressed do I mail the corrected pages to you?

Thanks.

Greg Nair
Arch Coal, Inc.
Manager Surface Mine Planning
Northern Appalachia Operations
100 Tygart Drive
Grafton, WV 26354

Office Direct: (304) 265-9778 Mobile: (304) 290-3202 Email: gnair@archcoal.com

From: Roberts, Daniel P [mailto:Daniel.P.Roberts@wv.gov]

Sent: Friday, October 21, 2016 9:53 AM

To: Nair, Greg

Cc: McKeone, Beverly D

Subject: WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel Preparation Plant

From:

Roberts, Daniel P

Sent:

Friday, October 21, 2016 9:53 AM

To:

Nair, Greg (GNair@archcoal.com)

Cc:

McKeone, Beverly D

Subject:

WV DAQ Permit Application Incomplete for Wolf Run Mining Company - Sentinel

Preparation Plant

RE:

Application Status: Incomplete Wolf Run Mining Company

Sentinel Preparation Plant

Permit Application No. R13-0119D

Plant ID No. 001-00005

Mr. Nair:

Your application for a modification permit for a wet wash coal preparation plant was received by this Division on August 17, 2016 and assigned to the writer for review. The applicant place a Class I legal advertisement in The Barbour Democrat on August 17, 2016. The DAQ received an original affidavit of publication on September 1, 2016. Upon initial review of said application and additional information received, it has been determined that the application as submitted is incomplete based on the following items:

1. Belt conveyor BC-13 and open storage pile OS-3 were previously permitted as part of the refuse circuit. This application now includes them as part of the clean coal circuit. Were they previously constructed and now relocated or were they never constructed?

The Equipment Table lists BC-13 as a refuse conveyor with maximum capacities of 360 TPH and 800,000 TPY. The Conveying Affected Source Sheet lists BC-13 as a refuse conveyor with maximum capacities of 244 TPH and 800,000 TPY. The emissions calculations spreadsheet still includes BC-13 as part of the refuse circuit and lists transfer point TP-24 as BC-12 to BC-13 with maximum transfer rates of 244 TPH and 300,000 TPY. There is no exit transfer point listed from BC-13 to another piece of equipment or open storage pile. New transfer point TP-49 from BC-6 to Plow to either BC-13/BC-21 includes BC-13 in the clean coal circuit, but once again there is no exit transfer point from BC-13. Please make corrections as necessary to provide consistent information throughout the application.

2. On Attachment F – Process Flow Diagram, the drawing does not include or label belt conveyors BC-3 and BC-19. The drawing depicts belt conveyors BC-17 and BC-18 as part of the refuse circuit being fed by belt conveyor BC-12 and transferring refuse to open storage pile OS-7, but they are listed and described throughout the rest of the application as clean coal conveyors. The Process Flow Diagram also does not include various transfer points, such as TP-6 from BC-3 to OS-1, TP-45 from BC-20 to OS-7. There is no transfer point from BC-13 to OS-3. Most transfer points list their control device, but some do not. Transfer point TP-23 is listed twice... once before belt conveyor BC-12 and once after it. Please make corrections as necessary.

The drawing depicts new radial stacker BC-20 as part of the refuse circuit and deposits material onto open storage pile OS-7. From open storage pile OS-7, where does the refuse go after it enters the underground feeder at transfer point TP-46? The rest of the application references BC-20 and OS-7 as handling clean coal.

Entire Document

NON-CONFIDENTIAL

On the Equipment Table and the Conveying Affected Source Sheet, belt conveyor BC-1 lists its maximum capacities as 2,500 TPH and 4,400,000 TPY, which was an increase from the previously permitted values of 1,350 TPH and 3,600,000 TPY. However, this appears to be a typo because the crusher that is fed by BC-1 is rated for 1,350 TPH and 3,600,000 TPY as well as everything downstream from there. Please make corrections if necessary.

Belt conveyor BC-15 is listed with a maximum annual capacity of 800,000 TPY on both forms. However, in the Emissions Calculations Spreadsheet Section 1, transfer points TP-35 from CR-2 to BC-15 from BC-15 to OS-5 list the maximum annual transfer rate as 400,000 TPY, which matches the maximum annual throughput for OS-5. Please make corrections as necessary.

Crusher CR-1 is listed with maximum capacities of 1,350 TPH and 3,600,000 TPY on both forms and in the Emissions Calculations Spreadsheet under the transfer points section. However, in the Emissions Calculations Spreadsheet, the inputs list 1,350 TPH and 1,849,303 TPY. Please make corrections as necessary.

Crusher CR-2 is listed with maximum capacities of 600 TPH and 3,600,000 TPY on both forms. However, in the Emissions Calculations Spreadsheet, the inputs list zero TPH and zero TPY. Also, the maximum capacities for transfer points TP-34 from Loader to CR-2 is listed as 360 TPH and 800,000 TPY, TP-35 from CR-2 to BC-15 is listed as 360 TPH and 400,000 TPY and TP-40 from CR-2 to BC-16 is listed as 360 TPH and 800,000 TPY. Please make corrections as necessary.

In the Equipment Table, Open stockpile OS-3 is listed as a refuse stockpile with a maximum base area of 46,875 ft2 and capacity of 300,000 tons. However, the Storage Activity Affected Source Sheet lists open stockpile OS-3 as a clean coal stockpile with a maximum base area of 62,500 ft2 and capacity of 800,000 tons. Open stockpile OS-7 is listed as a sized coal stockpile. However, the Storage Activity Affected Source Sheet lists open stockpile OS-7 as a clean coal stockpile. Please make corrections as necessary.

- 4. On the Equipment Table and in the Conveying Affected Source Sheet, clean coal belt conveyors BC-5 and BC-6 are listed with a maximum hourly capacity of 800 TPH each. However, in the emission calculations spreadsheet, transfer points TP-10 from the Prep Plant to BC-5 and TP-11 from BC-6 to OS-2 are listed as 600 TPH. Make corrections as necessary.
- 5. On the Storage Activity Affected Source Sheet, please change the Source Identification Number for Bin 1, Bin 2 and Bin 3 to BS-1, BS-2 and BS-3, respectively, to match information in the rest of the application.
- 6. In the Emissions Calculations Spreadsheet Section 1, transfer points TP-21 from BS-2 to BC-10, TP-22 from BC-10 to BC-11 and TP-23 from BC-12 to BC-13 all list zero for their maximum hourly transfer rate. Also, BC-13 is now part of the clean coal circuit. Make corrections as necessary.
- 7. In Section 3 Unpaved Haulroads, Item 8 has a zero entered for number of wheels, mean vehicle weight, mean vehicle speed and miles per trip. Please explain. Make corrections as necessary.

Please address the above deficiencies in writing within fifteen (15) days of the receipt of this email. Application review will not commence until the application has been deemed to be technically complete. Failure to respond to this request in a timely manner may result in the denial of the application.

Should you have any questions, please contact Dan Roberts at (304) 926-0499 ext. 1210 or reply to this email.

From: Nair, Greg <GNair@archcoal.com>
Sent: Monday, October 17, 2016 3:49 PM

To:Roberts, Daniel PCc:Freeman, Thomas

Subject: RE: Wolf Run Mining Company R13-0119D

I.D. No. DOI-00005 Reg RI3-01190
Company Company Sentinel Prep Plant R 6

Good Afternoon Dan.

Sorry I have not responded sooner. I was on vacation Friday and had a rush project earlier today. Thanks for getting back to me on this application.

You are correct in that we are wanting to add clean coal belt conveyors BC-20 and BC-21, increase the size of the stockpiles OS-3 and OS-8 and the other stockpiles. These are really the only major changes being proposed. A plow is being proposed to be installed in BC-6.

If you have any other questions or need any additional information please let me know.

Greg Nair
Arch Coal, Inc.
Manager Surface Mine Planning
Northern Appalachia Operations
100 Tygart Drive

Grafton, WV 26354 Office Direct: (304) 265-9778 Mobile: (304) 290-3202 Email: gnair@archcoal.com

From: Roberts, Daniel P [mailto:Daniel.P.Roberts@wv.gov]

Sent: Friday, October 14, 2016 8:21 AM

To: Nair, Greg

Cc: Freeman, Thomas

Subject: RE: Wolf Run Mining Company R13-0119D

Greg,

Hey. It's been crazy and I apologize. I took the application home last night and looked through it. At first look, you are proposing to add clean coal belt conveyors BC-20 and BC-21 and increase the size of stockpiles OS-3 and OS-8 and other stockpiles. What else is changing? The add states a decrease of 58.65 TPY for PM. I will be looking at the current permit today and comparing the proposed information in the application and working on my completeness review.

Thanks, Dan

From: Nair, Greg [mailto:GNair@archcoal.com]
Sent: Thursday, October 13, 2016 1:16 PM

To: Roberts, Daniel P < <u>Daniel.P.Roberts@wv.gov</u>>
Cc: Freeman, Thomas < <u>TFreeman@archcoal.com</u>>
Subject: FW: Wolf Run Mining Company R13-0119D

Good Afternoon Dan.

Just wanted to send a short note to see if you could tell me how the application is coming along or where we are at in the stack.

Thanks.

Greg Nair
Arch Coal, Inc.
Manager Surface Mine Planning
Northern Appalachia Operations
100 Tygart Drive
Grafton, WV 26354

Office Direct: (304) 265-9778 Mobile: (304) 290-3202 Email: gnair@archcoal.com

From: Nair, Greg

Sent: Thursday, September 22, 2016 11:24 AM **To:** Roberts, Daniel P (<u>Daniel.P.Roberts@wv.gov</u>)

Cc: Freeman, Thomas

Subject: Wolf Run Mining Company R13-0119D

Good Morning Mr. Roberts.

I was wondering if you could provide an update on the following application:

Wolf Run Mining Company Facility ID No. 001-00005 Application No. R13-0119D

The certificate of publication was forwarded to your office on August 30, 2016.

Thank you.

Greg Nair
Arch Coal, Inc.
Manager Surface Mine Planning
Northern Appalachia Operations
100 Tygart Drive
Grafton, WV 26354

I.D. No. <u>OCI-COOOS</u> Reg R13-0196 Company Wolf Run Mming Company Fig.: Sentinel Facility 6 Initia: OPR

topo

clear markers * street

NON-CONFIDENTIAL

UC Defaulted Accounts Search Results

Sorry, no records matching your criteria were found.

FEIN:
Business name:
Doing business

as/Trading as:

550699931

WOLF RUN MINING COMPANY

Company Wolf Run Moning Company
Facility Sentinel Facility
6

nitials.

OPR.

Please use your browsers back button to try again.

WorkforceWV	Unemployment	Offices of the Insurance
W OI KTOICE W V	<u>Compensation</u>	<u>Commissioner</u>

West Virginia Secretary of State — Online Data Services

Business and Licensing

Online Data Services Help

Business Organization Detail

I.D. No. 001-00005 Reg RB-0490 Company Wolf Run Manag Company Facility Seatmel Manag Pagnale Initials OPR

NOTICE: The West Virginia Secretary of State's Office makes every reasonable effort to ensure the accuracy of information. However, we make no representation or warranty as to the correctness or completeness of the information. If information is missing from this page, it is not in the The West Virginia Secretary of State's database.

WOLF RUN MINING COMPANY

Organization	Informati	on		1.4				
Org Type	Effective Date	Established Date	Filing Date	Charter	Class	Sec Type	Termination Date	Termination Reason
C Corporation	5/23/1990		5/23/1990	Domestic	Profit			

Business Purpose	2121 - Mining, Quarrying, Oil & Gas Extraction - Mining (Except Oil and Gas) - Surface & Underground Coal Mining	Capital Stock	5000.0000
Charter County		Control Number	0
Charter State	WV	Excess Acres	2568
At Will Term		Member Managed	
At Will Term Years		Par Value	10.000000
Authorized Shares	500		

	₩
	Entire Document
Addresses	, NON-CONFIDENTIAL

Туре	Address	_
Local Office Address	300 CORPORATE CENTRE DRIVE SCOTT DEPOT, WV, 25560	
Mailing Address	CITYPLACE ONE, SUITE 300 ATTN: TAX DEPARTMENT ST. LOUIS, MO, 63141 USA	
Notice of Process Address	C T CORPORATION SYSTEM 5400 D BIG TYLER ROAD CHARLESTON, WV, 25313	
Principal Office Address	99 EDMISTON WAY SUITE 211 BUCKHANNON, WV, 26201 USA	
Туре	Address	

Officers		
Туре	Name/Address	
Director	PAUL A LANG CITYPLACE ONE, SUITE 300 ST. LOUIS, MO, 63141	
Director	ROBERT G. JONES CITYPLACE ONE, SUITE 300 ST. LOUIS, MO, 63141	
Incorporator	DAVID B. SHAPIRO PO BOX 273 CHARLESTON, WV, 25321 USA	
President	KENNETH D COCHRAN CITY PLACE ONE, SUITE 300 ST. LOUIS, MO, 63141	
Secretary	ROBERT G JONES CITY PLACE ONE, SUITE 300 ST. LOUIS, MO, 63141	
Treasurer	JOHN T. DREXLER 300 CORPORATE CENTRE DR SCOTT DEPOT, WV, 25560	
Туре	Name/Address	· · · · · · · · · · · · · · · · · · ·

Name Changes		
Date	Old Name	
12/13/2005	ANKER WEST VIRGINIA MINING COMPANY, INC.	

Date Old Name

Date	Amendment
12/13/2005	NAME CHANGE: FROM ANKER WEST VIRGINIA MINING COMPANY, INC.
9/2/1997	MERGER; MERGING BECKLEY SMOKELESS LIMITED LIABILITY COMPANY A QUAL WV LLC WITH AND INTO ANKER WEST VIRGINIA MINING COMPANY, INC. A QUAL WV CORP THE SURVIVOR.
8/29/1997	MERGER; MERGING SPRUCE FORK COAL COMPANY, INC., A WV CORP WITH AND INTO ANKER WEST VIRGINIA MINING COMPANY, INC., A WV CORP. THE SURVIVOR.
8/28/1997	MERGER; MERGING PINE VALLEY COAL COMPANY, INC., A WV CORP, WITH AND INTO ANKER WEST VIRGINIA MINING COMPANY, INC., A WV CORP, THE SURVIVOR.
8/28/1997	MERGER; MERGING ADVANTAGE ENERGY CORPORATION, A WV CORP WITH AND INTO ANKER WEST VIRGINIA MINING COMPANY, INC., A WV CORP, THE SURVIVOR.
7/31/1997	CHANGE OF NAME FROM PHILIPPI DEVELOPMENT, INC. TO ANKER WEST VIRGINIA MINING COMPANY, INC.
Date	Amendment

Annual Reports		
Date	Filed For	
6/14/2016	2017	
6/16/2015	2016	
6/16/2014	2015	
6/11/2013	2014	
6/1/2012	2013	
3/28/2011	2012	
4/15/2010	2011	
6/8/2009	2010	
8/15/2008	2009	
10/12/2007	2008	
3/19/2007	2007	
10/7/2005	2006	

11/19/2004	2005	- 450 1 0
6/22/2004	2004	
3/4/2003	2003	
10/17/2001	2002	
9/28/2000	2001	
7/10/2000	2000	
3/10/2000	2000	
	1999	
	1998	
	1997	
	1996	
Date	Filed For	A SALES ALLES AND A SALES AND

For more information, please contact the Secretary of State's Office at 304-558-8000.

Friday, September 2, 2016 — 11:38 AM

© 2016 State of West Virginia

SENTINEL COMPLEX

GPR

August 30, 2016

Co pary Hold Run Moring Company

, Sentmel Facility

Mr. Dan Roberts
West Virginia Department of Environmental Protection
Division of Air Quality
601 57th Street, SE
Charleston, West Virginia 25304

Subject:

Wolf Run Mining Company - Sentinel Complex

Application Status, Facility ID No.: 001-00005

Application No. R13-0119D

Dear Mr. Roberts:

Transmitted herewith is the *Original affidavit for Class I legal advertisement*, for the above subject matter, that appeared in the Barbour Democrat on Wednesday, August 17th, 2016.

Please include this with the initial application for completeness of the package.

Should you have any questions or need additional information, please do not hesitate to contact Greg Nair at 304-265-9778 or at gnair@archcoal.com or myself at 304-457-1895 Ext. 3353 or at greenan@archcoal.com

Sincerely,

Tom Freeman, P.E. Environmental Engineer Sentinel Complex

21550 Barbour County Highway - Philippi, West Virginia 26416 Phone: (304) 457-1895 Ext. 3353 * Fax: (304) 457-1005

OFFICE OF THE BARBOUR DEMOCRAT

l, **John Eric Cutright**, Publisher of **The BARBOUR DEMOCRAT**, a weekly newspaper published in the City of Philippi, County of Barbour, and State of West Virginia, do certify that the annexed:

LEGAL NOTICE

was duly printed in said paper one week commencing on Wednesday, the 17th day of August, 2016.

Given under my hand at Philippi, West Virginia, this 17th day of August, 2016.

, Publisher

Printer's Fee......\$37.28

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Wolf Run Mining Company, 100 Tygart Drive, Grafton, West Virginia 26354 has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Modification Permit for a Coal Preparation Facility located on Route 76, near Philippi, in Barbour County, West Virginia. The latitude and longitude coordinates are: Latitude 39° 12' 00" and Longitude 80° 03' 02'.

The applicant estimates there will be a decrease in the potential to discharge the following Regulated Air Pollutants: for Particulate Matter a decrease of 58.65 tons per year and for Particulate Matter under 10 microns a decrease of 27.56 tons per year.

Startup of operation is planned to begin on or about the 21st day of November, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the 17th day of August, 2016.

Bv:

Wolf Run Mining Company Greg Nair Power of Attorney 100 Tygart Drive Grafton, West Virginia 26354

8-17

STATE OF WEST VIRGINIA COUNTY OF BARBOUR; to wit

Sworn to and subscribed before me this 17th day of August, 2016.

NOTARY PUBLIC

My Commission Expires October 16, 2023.

DECEIVED

SEP 01 2016

W DEP/DIV OF AIR QUALITY

Com Wolf Run Mining Company
Facility Sentinel Facility

From:

Freeman, Thomas <TFreeman@archcoal.com>

Sent:

Tuesday, August 30, 2016 7:22 AM Adkins, Sandra K; Roberts, Daniel P

To: Cc:

Nair, Greg; Freeman, Thomas

Subject:

WV DAQ Permit Application Status for Wolf Run Mining Company; Philippi

Attachments:

Publication Affidavit 08172016.pdf

Dear Ms. Adkins:

Per email dated August 18th, 2016 to Mr. Greg Nair, ACI – Northern App. Manager of Surface Mine Planning, concerning the application for modification permit to the Sentinel Preparation Plant; transmitted herewith is a scanned copy of the original affidavit for Class I Legal advertisement for Wolf Run Mining Company's – Philippi (Sentinel Complex), Facility ID No. 001-00005, Application No. R13-0119D.

The original is being mailed to Mr. Roberts today. Please include this affidavit with the initial application for completeness of the package.

Should you have any questions or need additional information, please do not hesitate to contact Greg Nair at 304-265-9778 or at grand-coal.com or myself at 304-457-1895 Ext. 3353 or at grand-coal.com.

Sincerely,

Tom Freeman, P.E.

Environmental Engineer Sentinel Complex

21550 Barbour County Highway Philippi, West Virginia 26416 (304) 457-1895 Ext. 3353 (Office) (304) 517-3168 (Cell)

***Email Disclaimer: The information contained in this e-mail, and in any accompanying documents, may constitute confidential and/or legally privileged information. The information is intended only for use by the designated recipient. If you are not the intended recipient (or responsible for delivery of the message to the intended recipient), you are hereby notified that any dissemination, distribution, copying, or other use of, or taking of any action in reliance on this e-mail is strictly prohibited. If you have received this e-mail communication in error, please notify the sender immediately and delete the message from your system.

SENTINEL COMPLEX

August 30, 2016

Ms. Dan Roberts
West Virginia Department of Environmental Protection
Division of Air Quality
601 57th Street, SE
Charleston, West Virginia 25304

Subject:

Wolf Run Mining Company - Sentinel Complex

Application Status, Facility ID No.: 001-00005

Application No. R13-0119D

Dear Mr. Roberts:

Transmitted herewith is the *Original affidavit for Class I legal advertisement*, for the above subject matter, that appeared in the Barbour Democrat on Wednesday, August 17th, 2016.

Please include this with the initial application for completeness of the package.

Should you have any questions or need additional information, please do not hesitate to contact Greg Nair at 304-265-9778 or at gnair@archcoal.com or myself at 304-457-1895 Ext. 3353 or at tfreeman@archcoal.com

Sincerely,

Tom Freeman, P.E.

Environmental Engineer

Sentinel Complex

OFFICE OF THE BARBOUR DEMOCRAT

I, John Eric Cutright, Publisher of The BARBOUR DEMOCRAT, a weekly newspaper published in the City of Philippi, County of Barbour, and State of West Virginia, do certify that the annexed:

LEGAL NOTICE

was duly printed in said paper one week commencing on Wednesday, the 17th day of August, 2016.

Given under my hand at Philippi, West Virginia, this 17th day of August, 2016.

, Publisher

Printer's Fee.....\$37.28

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Wolf Run Mining Company, 100 Tygart Drive, Grafton, West Virginia 20354 has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Modification Permit for a Coal Preparation Facility located on Route 76, near Philippi, in Barbour County, West Virginia. The latitude and long-tude coordinates are: Latitude 39° 12' 00' and Long-tude 80' 03' 02'.

The applicant estimates there will be a decrease in the potential to discharge the following Regulated Air Poctutants: for Particulate Matter a decrease of 58.65 tons per year and for Particulate Matter under 10 microns a decrease of 27.58 tons per year.

Startup of operation is planned to begin on or about the 21st day of November, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quarty, 601 57th Street, SE, Charleston, WV 25304, for al least 30 catendar days from the date of pubScation of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 925-0499, extension 1250, during normal business hours. Dated this the 17th day of August, 2016.

N By:

Wolf Run Mining Company Greg Nair Power of Attorney 100 Tygart Drive Grafton, West Virginia 26354

STATE OF WEST VIRGINIA COUNTY OF BARBOUR; to wit

Sworn to and subscribed before me this 17th day of August, 2016.

NOTARY PUBLIC

My Commission Expires October 16, 2023.

OFFICIAL SEAL
NOTARY PUBLIC
STATE OF WEST VIRGINIA
KRISTINA MORAN
The Barbour Democrat
P.O. Box 459
Philippi, Wast Virginia 26416
My Commission Explres Oct. 16, 2023

From:

Ward, Beth A

Sent:

Thursday, August 18, 2016 4:08 PM

To:

Roberts, Daniel P

Subject:

WOLF RUN MINING COMPANY PERMIT APPLICATION FEE

This is the receipt for payment received from:

WOLF RUN MINING COMPANY, PHILIPPI, CHECK NUMBER 202268, CHECK DATE 08/04/2016, \$2,000.00

R13-0119D ID# 001-00005

OASIS Deposit CR 1700018334

Thank You!

1D No 001-00005 R- RIB-ONGO Comme Wolf Ren Moning Company
Francis, Sentinel Facility 6.

Beth Ward

WV DEPARTMENT OF ENVIRONMENTAL PROTECTION **BTO FISCAL** 601 57[™] STREET SE **CHARLESTON, WV 25304** (304) 926-0499 EXT 1846 beth.a.ward@wv.gov

Adkins, Sandra K

From:

Adkins, Sandra K

Sent:

Thursday, August 18, 2016 10:35 AM

To:

'gnair@archcoal.com'

Cc:

McKeone, Beverly D; Roberts, Daniel P

Subject:

WV DAQ Permit Application Status for Wolf Run Mining Company; Philippi

RE: Application Status

Wolf Run Mining Company

Philippi

Facility ID No. 001-00005

Application No. R13-0119D

Mr. Nair,

Your application for a modification permit for the Sentinel Preparation Plant was received by this Division on August 17, 2016, and was assigned to Dan Roberts. The following item was not included in the initial application submittal:

Original affidavit for Class I legal advertisement not submitted.

This item is necessary for the assigned permit writer to continue the 30-day completeness review.

Within 30 days, you should receive a letter from Dan stating the status of the permit application and, if complete, given an estimated time frame for the agency's final action on the permit.

Any determination of completeness shall not relieve the permit applicant of the requirement to subsequently submit, in a timely manner, any additional or corrected information deemed necessary for a final permit decision.

Should you have any questions, please contact the assigned engineer, Dan Roberts, at 304-926-0499, extension 1210.

R13-0119D Dan 001-00005 modifica

45CSR13 Administrative Update, Construction, Modification, Relocation, Temporary Permit or General Permit Registration Incomplete Application

A complete application is demonstrated when all of the information required below is properly prepared, completed and attached. The items listed below are required information which must be submitted with a 45CSR13 permit application. Any submittal will be considered incomplete if the required information is not included. The applicant must submit a complete application in order to receive a 45CSR13 permit.

0,001				
NO.	Class I legal advertisement not published in a newspaper certified to accept legal advertisements and original affidavit submitted.			
	Application fee AND/OR additional application fees not included: \$250 Class I General Permit \$300 Class II Administrative Update \$1,000 Construction, Modification, Relocation or Temporary Permit \$500 Class II General Permit \$1,000 NSPS \$1,000 NSPS \$2,500 NESHAP \$2,500 VESHAP \$2,500 45CSR27 Pollutant \$5,000 Major Modification \$10,000 Major Construction			
	Original and two (2) copies of the application not submitted.			
	File organization – application pages are not numbered or in correct order, application is not bound in some way, etc.			
	Confidential Business Information is not properly identified.			
	General application forms not completed and signed by a responsible official.			
	Authority of Corporation form not included – required if application is signed by someone other than a responsible official.			
	Applicant is not registered with the West Virginia Secretary of State's Office.			
	Copy of current Business Registration Certificate not included.			
	Process description, including equipment and emission point identification numbers, not submitted.			
	Process flow diagram, including equipment and emission point identification numbers, not submitted.			
	Plot plan, including equipment and emission point identification numbers, not submitted.			
	Applicable technical forms not completed and submitted:			
	 ☐ Emission Point Data Summary Sheets ☐ Air Pollution Control Device Sheets ☐ Equipment List Form 			
	Emission calculations not included – emission factors, references, source identification numbers, etc.			
	Electronic submittal diskette not included.			